Unique expression patterns of the embryonal stem cell marker SOX2 and hormone receptors suggest the existence of a subpopulation of epithelial stem/progenitor cells in porcine and bovine endometrium
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35561288
PubMed Central
PMC9297784
DOI
10.1002/vms3.802
Knihovny.cz E-zdroje
- Klíčová slova
- SOX2, endometrium, epithelial stem/progenitor cells, farm animals, hormone receptors,
- MeSH
- biologické markery metabolismus MeSH
- endometrium * MeSH
- kmenové buňky metabolismus MeSH
- prasata MeSH
- progesteron MeSH
- receptory pro estrogeny metabolismus MeSH
- receptory progesteronu * metabolismus MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- progesteron MeSH
- receptory pro estrogeny MeSH
- receptory progesteronu * MeSH
BACKGROUND: There are currently insufficient data on the population of endometrial epithelial stem/progenitor cells in farm animals. OBJECTIVES: With the aim of identifying a potential population of epithelial stem/progenitor cells in the porcine and bovine endometrium, this study immunohistochemically examined the expression patterns of the oestrogen and progesterone receptors, as well as that of the embryonal stem cell marker SOX2. METHODS: A total of 24 endometrial tissue samples obtained from cycling pigs (n = 12) and cows (n = 12) were included in our study. Each endometrium was divided into basal, middle and luminal portions. The percentage of marker-positive cells and the intensity of the immunoreaction in each portion of the endometrium were determined. RESULTS: Inverse expression patterns of SOX2 and progesterone receptors were found in both animal species throughout the oestrous cycle. Strong diffuse SOX2 expression was detected in the basal portions of the glands, while a significant decrease in positivity and a weak immunoreaction were found in the luminal two thirds of the glandular epithelium. Strong progesterone receptor expression was observed in at least 90% of glandular cells in the middle and luminal portions, whereas weak staining and significant decrease in positivity were detected in the basal portions of the glands. One oestrogen receptor expression pattern resembled that of progesterone receptors. CONCLUSION: The inverse expression patterns of SOX2 and hormone (especially progesterone) receptors suggest that endometrial epithelial stem/progenitor cells represent a subset of cells that reside in the basal portions of the endometrial glands in both the bovine and porcine endometrium.
CGB Laboratory Inc Ostrava Czech Republic
Cytohisto s r o Břeclav Czech Republic
Department of Pathology Znojmo Hospital Znojmo Czech Republic
Institute of Sexology 1st Faculty of Medicine Charles University Prague Prague Czech Republic
Zobrazit více v PubMed
Badve, S. , Turbin, D. , Thorat, M. A. , Morimiya, A. , Nielsen, T. O. , Perou, C. M. , Dunn, S. , Huntsman, D. G. , & Nakshatri, H. (2007). FOXA1 expression in breast cancer–correlation with luminal subtype A and survival. Clinical Cancer Research, 13(15), 4415–4421. 10.1158/1078-0432.CCR-07-0122 PubMed DOI
Bunina, D. , Abazova, N. , Diaz, N. , Noh, K. M. , Krijgsveld, J. , & Zaugg, J. B. (2020). Genomic rewiring of SOX2 chromatin interaction network during differentiation of ESCs to postmitotic neurons. Cell Systems, 10, 480–494. 10.1016/j.cels.2020.05.003 PubMed DOI PMC
Cabezas, J. , Lara, E. , Pacha, P. , Rojas, D. , Veraguas, D. , Saravia, F. , Rodríguez‐Alvarez, L. , & Castro, F. O. (2014). The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reproduction in Domestic Animals = Zuchthygiene, 49, 550–559. 10.1111/rda.12309 PubMed DOI
Costa, R. H. , Grayson, D. R. , & Darnell, J. E. (1989). Multiple hepatocyte‐enriched nuclear factors function in the regulation of transthyretin and alpha 1‐antitrypsin genes. Jolecular and Cellular Biology, 9(4), 1415–1425. 10.1128/mcb.9.4.1415-1425.1989 PubMed DOI PMC
Fayazi, M. , Salehnia, M. , & Ziaei, S. (2016). Characteristics of human endometrial stem cells in tissue and isolated cultured cells. An immunohistochemical aspect. Iran Biomedical Journal, 20, 109–116. 10.7508/ibj.2016.02.006 PubMed DOI PMC
Ferenczy, A. (1976). Studies on the cytodynamics of human endometrial regeneration. II. Transmission electron microscopy and histochemistry. American Journal of Obstetrics and Gynecology, 124, 582–595. 10.1016/0002-9378(76)90059-4 PubMed DOI
Gargett, C. E. (2004). Stem cells in gynaecology. Australian and New Zealand Journal of Obstetrics and Gynaecology, 44, 380–386. 10.1111/j.1479-828X.2004.00290.x PubMed DOI
Gargett, C. E. , Schwab, K. E. , & Deane, J. A. (2016). Endometrial stem/progenitor cells: The first 10 years. Human Reproduction Update, 22, 137–163. 10.1093/humupd/dmv051 PubMed DOI PMC
Gargett, C. E. , Chan, R. W. , & Schwab, K. E. (2008). Hormone and growth factor signaling in endometrial renewal: Role of stem/progenitor cells. Molecular and Cellular Endocrinology, 288, 22–29. 10.1016/j.mce.2008.02.026 PubMed DOI
Ginther, O. J. , Kastelic, J. P. , & Knopf, L. (1989). Composition and characteristics of follicular waves during the bovine estrous cycle. Animal Reproduction Science, 20, 187–200. 10.1016/0378-4320(89)90084-5 DOI
He, S. , Nakada, D. , & Morrison, S. J. (2009). Mechanisms of stem cell self‐renewal. Annual Review of Cell and Developmental Biology, 25, 377–406. 10.1146/annurev.cellbio.042308.113248 PubMed DOI
Holmes, Z. E. , Hamilton, D. J. , Hwang, T. , Parsonnet, N. V. , Rinn, J. L. , Wuttke, D. S. , & Batey, R. T. (2020). The Sox2 transcription factor binds RNA. Nature Communication, 11(1), 1805. 10.1038/s41467-020-15571-8 PubMed DOI PMC
Ireland, J. J. , Murphee, R. L. , & Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. Journal of Dairy Science, 63, 155–160. 10.3168/jds.S0022-0302(80)82901-8 PubMed DOI
Lara, E. , Rivera, N. , Rojas, D. , Rodríguez‐Alvarez, L. L. , & Castro, F. O. (2017). Characterization of mesenchymal stem cells in bovine endometrium during follicular phase of oestrous cycle. Reproduction in Domestic Animals = Zuchthygiene, 52, 707–714. 10.1111/rda.12969 PubMed DOI
Lenz, J. , Chvatal, R. , Fiala, L. , Konecna, P. , & Lenz, D. (2021). Comparative immunohistochemical study of deep infiltrating endometriosis, lymph node endometriosis and atypical ovarian endometriosis including description of a perineural invasion. B Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 165, 69–79. 10.5507/bp.2020.006 PubMed DOI
Li, X. , Chen, S. , Sun, T. , Xu, Y. , Chen, Y. , Liu, Y. , Xiang, R. , & Li, N. (2014). The transcriptional regulation of SOX2 on FOXA1 gene and its application in diagnosis of human breast and lung cancers. Clinical Laboratory, 60(6), 909–918. 10.7754/clin.lab.2013.130437 PubMed DOI
Łupicka, M. , Bodek, G. , Shpigel, N. , Elnekave, E. , & Korzekwa, A. J. (2015). Identification of pluripotent cells in bovine uterus: In situ and in vitro studies. Reproduction, 149, 317–327. 10.1530/REP-14-0348 PubMed DOI
Masuda, H. , Matsuzaki, Y. , Hiratsu, E. , Ono, M. , Nagashima, T. , Kajitani, T. , Arase, T. , Oda, H. , Uchida, H. , Asada, H. , Ito, M. , Yoshimura, Y. , Maruyama, T. , & Okano, H. (2010). Stem cell‐like properties of the endometrial side population: Implication in endometrial regeneration. PLoS One, 28(5), e10387. 10.1371/journal.pone.0010387 PubMed DOI PMC
Mitalipov, S. , & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in Biochemical Engineering/Biotechnology, 114, 185–199. 10.1007/10_2008_45 PubMed DOI PMC
Noseir, W. M. (2003). Ovarian follicular activity and hormonal profile during estrous cycle in cows: The development of 2 versus 3 waves. Reproductive Biology and Endocrinology, 1, 50. 10.1186/1477-7827-1-50 PubMed DOI PMC
Padykula, H. A. (1991). Regeneration in the primate uterus: the role of stem cells. Annals of the New York Academy of Sciences, 622, 47–56. 10.1111/j.1749-6632.1991.tb37849.x PubMed DOI
Perry, K. J. , Thomas, A. G. , & Henry, J. J. (2013). Expression of pluripotency factors in larval epithelia of the frog Xenopus: Evidence for the presence of cornea epithelial stem cells. Developmental Biology, 374, 281–294. 10.1016/j.ydbio.2012.12.005 PubMed DOI PMC
Salamonsen, L. A. (2003). Tissue injury and repair in the female human reproductive tract. Reproduction, 125, 301–311. 10.1530/rep.0.1250301 PubMed DOI
Schwab, K. E. , Chan, R. W. , & Gargett, C. E. (2005). Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertility and Sterility, 84(Suppl 2), 1124–1130. 10.1016/j.fertnstert.2005.02.056 PubMed DOI
Soede, N. M. , Langendijk, P. , & Kemp, B. (2011). Reproductive cycles in pigs. Animal Reproduction Science, 124, 251–258. 10.1016/j.anireprosci.2011.02.025 PubMed DOI
Spencer, T. E. , Hayashi, K. , Hu, J. , & Carpenter, K. D. (2005). Comparative developmental biology of the mammalian uterus. Current Topics in Developmental Biology, 68, 85–122. 10.1016/S0070-2153(05)68004-0 PubMed DOI
Subbarao, R. B. , Ullah, I. , Kim, E. J. , Jang, S. J. , Lee, W. J. , Jeon, R. H. , Kang, D. , Lee, S. L. , Park, B. W. , & Rho, G. J. (2015). Characterization and evaluation of neuronal trans‐differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. International Journal of Molecular Sciences, 16, 10934–10951. 10.3390/ijms160510934 PubMed DOI PMC
Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine Reviews, 27, 208–219. 10.1210/er.2005-0016 PubMed DOI
Ulloa‐Montoya, F. , Verfaillie, C. M. , & Hu, W. S. (2005). Culture systems for pluripotent stem cells. Journal of Bioscience and Bioengineering, 100, 12–27. 10.1263/jbb.100.12 PubMed DOI
Valentijn, A. J. , Palial, K. , Al‐Lamee, H. , Tempest, N. , Drury, J. , Von Zglinicki, T. , Saretzki, G. , Murray, P. , Gargett, C. E. , & Hapangama, D. K. (2013). SSEA‐1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Human Reproduction, 28, 2695–2708. 10.1093/humrep/det285 PubMed DOI