The Agreement of a Two- and a Three-Dimensional Speckle-Tracking Global Longitudinal Strain

. 2022 Apr 25 ; 11 (9) : . [epub] 20220425

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566528

Grantová podpora
SGS01/LF/2020 University of Ostrava
MH CZ - DRO (FNOs/2021) Ministry of Health

Background: Two-dimensional (2D) and three-dimensional (3D) speckle-tracking echocardiography (STE) enables assessment of myocardial function. Here, we examined the agreement between 2D and 3D STE measurement of a global longitudinal strain (GLS) in patients with normal left ventricle, reduced ejection fraction, and cardiac pacing. Methods: Our analysis included 90 consecutive patients (59% males; average age: 73.2 ± 11.2 years) examined between May 2019−December 2020, with valid 2D and 3D loops for further speckle-tracking strain analysis. Linear regression, Pearson correlation, and a Bland−Altman plot were used to quantify the association between 2D and 3D GLS and related segments, using the 17-segment American Heart Association (AHA) model. Analyses were performed in the entire study group and subgroups. Intra- and inter-observer variability of 2D and 3D GLS measurement was also performed in all participants. Results: We observed a strong correlation between 2D and 3D GLS measurements (R = 0.76, p < 0.001), which was higher in males (R = 0.78, p < 0.001) than females (R = 0.69, p < 0.001). Associated segment correlation was poor (R = 0.2−0.5, p < 0.01). The correlation between 2D and 3D GLS was weaker in individuals with ventricular pacing of >50% (R = 0.62, p < 0.001) than <50% (R = 0.8, p < 0.001), and in patients with LVEF of <35% (R = 0.69, p = 0.002) than >35% (R = 0.72, p < 0.001). Intra-observer variability for 2D and 3D GLS was 2 and 2.3%, respectively. Inter-observer variability for 2D and 3D GLS was 3.8 and 3.6%, respectively Conclusion: Overall 2D and 3D GLS were closely associated but not when analyzed per segment. It seems that GLS comparison is more representative of global shortening than local displacement. Right ventricular pacing and reduced left ventricular ejection fraction were associated with a reduced correlation between 2D and 3D GLS.

Zobrazit více v PubMed

Amundsen B.H., Helle-Valle T., Edvardsen T., Torp H., Crosby J., Lyseggen E., Støylen A., Ihlen H., Lima J.A., Smiseth O.A., et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 2006;47:789–793. doi: 10.1016/j.jacc.2005.10.040. PubMed DOI

Curigliano G., Lenihan D., Fradley M., Ganatra S., Barac A., Blaes A., Herrmann J., Porter C., Lyon A.R., Lancellotti P., et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020;31:171–190. doi: 10.1016/j.annonc.2019.10.023. PubMed DOI PMC

Argyle R.A., Ray S.G. Stress and strain: Double trouble or useful tool? Eur. J. Echocardiogr. 2009;10:716–722. doi: 10.1093/ejechocard/jep066. PubMed DOI

Farsalinos K.E., Daraban A.M., Ünlü S., Thomas J.D., Badano L.P., Voigt J.U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors:The EACVI/ASE inter-vendor comparison study. J. Am. Soc. Echocardiogr. 2015;28:1171–1181. doi: 10.1016/j.echo.2015.06.011. PubMed DOI

Mirea O., Pagourelias E.D., Duchenne J., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U. Intervendor Differences in the Accuracy of detecting regional functional abnormalities: A report from the EACVI-ASE strain standardization task force. JACC Cardiovasc. Imaging. 2018;11:25–34. doi: 10.1016/j.jcmg.2017.02.014. PubMed DOI

Poyraz E., Tugba K.O., Güvenç R.C., Güvenç T.S. Correlation and agreement between 2D and 3D speckle-tracking echocardiography for left ventricular volumetric, strain, and rotational parameters in healthy volunteers and in patients with mild mitral stenosis. Echocardiography. 2019;36:897–904. doi: 10.1111/echo.14336. PubMed DOI

Mor-Avi V., Lang R.M., Badano L.P., Belohlavek M., Cardim N.M., Derumeaux G., Galderisi M., Marwick T., Nagueh S.F., Sengupta P.P., et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 2011;24:277–313. doi: 10.1016/j.echo.2011.01.015. PubMed DOI

Edvardsen T., Gerber B.L., Garot J., Bluemke D.A., Lima J.A., Smiseth O.A. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106:50–56. doi: 10.1161/01.CIR.0000019907.77526.75. PubMed DOI

Lumens J., Prinzen F.W., Delhaas T. Longitudinal strain: “Think globally track locally”. JACC Cardiovasc. Imaging. 2015;8:1360–1363. doi: 10.1016/j.jcmg.2015.08.014. PubMed DOI

Mazhari R., Omens J.H., Pavelec R.S., Covell J.W., McCulloch A.D. Transmural distribution of threedimensional systolic strains in stunned myocardium. Circulation. 2001;104:336–341. doi: 10.1161/01.CIR.104.3.336. PubMed DOI

Lumens J., Delhaas T., Arts T., Cowan B.R., Young A.A. Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H1573–H1579. doi: 10.1152/ajpheart.00074.2006. PubMed DOI

Karlsen S., Dahlslett T., Grenne B., Sjøli B., Smiseth O., Edvardsen T., Brunvand H. Global longitudinal strain is more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc. Ultrasound. 2019;17:18. doi: 10.1186/s12947-019-0168-9. PubMed DOI PMC

Hung C.h.L., Gonçalves A., Shah A.M., Cheng S., Kitzman D., Scott S.D. Age and gender-related influences on left ventricular mechanics in elderly individuals free of prevalent heart failure: The atherosclerosis risk in communities study. Circ. Cardiovasc. Imaging. 2017;10:e004510. doi: 10.1161/CIRCIMAGING.116.004510. PubMed DOI PMC

Yodwut C., Weinert L., Klas B., Lang R.M., Mor-Avi V. Effects of frame rate on three-dimensiona speckle tracking-based measurements of myocardial deformation. J. Am. Soc. Echocardiogr. 2012;25:978–985. doi: 10.1016/j.echo.2012.06.001. PubMed DOI

Altman M., Bergerot C., Aussoleil A., Davidsen E.S., Sibellas F., Ovize M., Bonnefoy-Cudraz E., Thibault H., Derumeaux G. Assesment of left ventricular systolic function by deformation imaging derived from speckle tracking: A comparison between 2D and 3D echo modalities. Eur. Heart J. Cardiovasc. Imaging. 2014;15:316–323. doi: 10.1093/ehjci/jet103. PubMed DOI

Trache T., Stöbe S., Tarr A., Pfeiffer D., Hagendorff A. The agreement between 3D, standard 2D and triplane 2D speckle tracking: Effects of image quality and 3D volume rate. Echo Res. Pract. 2014;1:71–83. doi: 10.1530/ERP-14-0025. PubMed DOI PMC

Obokata M., Nagata Y., Wu V.C., Kado Y., Kurabayashi M., Otsuji Y., Takeuchi M. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echoardiography speckle tracking for evaluation of global left ventricular strain. Eur. Heart J. Cardiovasc. Imaging. 2016;17:525–532. doi: 10.1093/ehjci/jev227. PubMed DOI

Dillikar M.V., Venkateshvaran A., Barooah B., Varyani R., Kini P., Dash P.K., Sola S. Three dimensional versus two dimensional strain for assessment of myocardial function: A case series. J. Indian Acad. Echocrdiogr. Cardiovsc. Imaging. 2017;1:18–23.

Mirea O., Pagourelias E.D., Duchenne J., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U. Variability and reproducibility of segmental longitudinal strain measurement: A report from the EACVI-ASE strain standardization task force. JACC Cardiovasc. Imaging. 2018;11:15–24. doi: 10.1016/j.jcmg.2017.01.027. PubMed DOI

Pedrizzetti G., Claus P., Kilner P.J., Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 2016;18:51. doi: 10.1186/s12968-016-0269-7. PubMed DOI PMC

Patrianakos A.P., Zacharaki A.A., Kalogerakis A., Solidakis G., Parthenakis F.I., Vardas P.E. Two-dimensional global and segmental longitudinal strain: Are the results from software in different high-end ultrasound systems comparable? Echo Res. Pract. 2015;2:29–39. doi: 10.1530/ERP-14-0070. PubMed DOI PMC

Muraru D., Niero A., Rodriguez-Zanella Cherata D., Badano L. Three-dimensional speckle-tracking echocardiography- benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn Ther. 2018;8:101–117. doi: 10.21037/cdt.2017.06.01. PubMed DOI PMC

Castel A.L., Menet A., Ennezat P.V., Delelis F., Le Goffic C., Binda C., Guerbaai R.A., Levy F., Graux P., Tribouilloy C., et al. Global longitudinal strain software upgrade: Implications for intervendor consistency and longitudinal imaging studies. Arch. Cardiovasc. Dis. 2016;109:22–30. doi: 10.1016/j.acvd.2015.08.006. PubMed DOI

Stokke T.M., Hasselberg N.E., Smedsrud M.K., Sarvari S.I., Haugaa K.H., Smiseth O.A., Edvardsen T., Remme E.W. Geometry as a confounder when assessing ventricular systolic function: Comparison between ejection fraction and strain. J. Am. Coll. Cardiol. 2017;70:942–954. doi: 10.1016/j.jacc.2017.06.046. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...