Synthesis and Exploitation of the Biological Profile of Novel Guanidino Xylofuranose Derivatives
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35576106
DOI
10.1002/cmdc.202200180
Knihovny.cz E-zdroje
- Klíčová slova
- antiproliferative activity, cholinesterase inhibitors, guanidino sugars, guanidinylation, nucleoside analogs,
- MeSH
- acetylcholinesterasa MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- nádory prsu * MeSH
- protinádorové látky * chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- xylosa chemie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- protinádorové látky * MeSH
- xylosa MeSH
The synthesis and biological evaluation of novel guanidino sugars as isonucleoside analogs is described. 5-Guanidino xylofuranoses containing 3-O-saturated/unsaturated hydrocarbon or aromatic-containing moieties were accessed from 5-azido xylofuranoses via reduction followed by guanidinylation with N,N'-bis(tert-butoxycarbonyl)-N''-triflylguanidine. Molecules comprising novel types of isonucleosidic structures including 5-guanidino 3-O-methyl-branched N-benzyltriazole isonucleosides and a guanidinomethyltriazole 3'-O-dodecyl xylofuranos-5'-yl isonucleoside were accessed. The guanidinomethyltriazole derivative and a 3-O-dodecyl (N-Boc)guanidino xylofuranose were revealed as selective inhibitors of acetylcholinesterase (Ki =22.87 and 7.49 μM, respectively). The latter also showed moderate antiproliferative effects in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells. An aminomethyltriazole 5'-isonucleoside was the most potent molecule with low micromolar GI50 values in both cells (GI50 =6.33 μM, 8.45 μM), similar to that of the drug 5-fluorouracil in MCF-7 cells. Moreover, the most bioactive compounds showed low toxicity in human fibroblasts, further indicating their interest as promising lead molecules.
Zobrazit více v PubMed
C. L. Hannon, E. V. Anslyn, The Guanidinium Group: Its Biological Role and Synthetic Analogs. in Bioorganic Chemistry Frontiers, Vol 3 (Eds. H. Dugas, F. P. Schmidtchen), Springer, Berlin, Heidelberg, 1993, pp. 193-255.
F. Saczewski, Ł. Balewski, Expert Opin. Ther. Pat. 2009, 19, 1417-1448.
R. G. S. Berlinck, A. F. Bertonha, M. Takaki, J. P. G. Rodriguez, Nat. Prod. Rep. 2017, 34, 1264-1301.
F. Blanco, B. Kelly, I. Alkorta, I. Rozas, J. Elguero, Chem. Phys. Lett. 2011, 511, 129-134.
K. Sidoryk, M. Świtalska, P. Rózga, J. Wietrzyk, I. Bujak, B. Żerek, Ł. Kaczmarek, M. Cybulski, Med. Chem. Res. 2017, 26, 3354-3366.
G. Duca, A. Aricu, K. Kuchkova, E. Secara, A. Barba, I. Dragalin, N. Ungur, G. Spengler, Nat. Prod. Res. 2019, 33, 3052-3056.
C. Li, M. R. Lewis, A. B. Gilbert, M. D. Noel, D. H. Scoville, G. W. Allman, P. B. Savage, Antimicrob. Agents Chemother. 1999, 43, 1347-1349.
A. Mishra, S. Batra, Curr. Top. Med. Chem. 2013, 13, 2011-2025.
A. Saeed, A. Bosch, M. Bettiol, D. L. N. González, M. F. Erben, Y. Lamberti, Molecules 2018, 23, 1158.
C. Pasero, I. D'Agostino, F. De Luca, C. Zamperini, D. Deodato, G. I. Truglio, F. Sannio, R. Del Prete, T. Ferraro, D. Visaggio, A. Mancini, M. B. Guglielmi, P. Visca, J.-D Docquier, M. Botta, J. Med. Chem. 2018, 61, 9162-9176.
Z. Li, Y. Meng, S. Xu, W. Shen, Z. Meng, Z. Wang, G. Ding, W. Huang, W. Xiao, J. Xu, Bioorg. Med. Chem. 2017, 25, 2772-2781.
P. H. Hsu, D. C. Chiu, K. L. Wu, P. S. Lee, J. T. Jan, Y. S. E. Cheng, K. C. Tsai, T. J. Cheng, J. M. Fang, Eur. J. Med. Chem. 2018, 154, 314-323.
S. Cuzzocrea, B. Zingarelli, P. Hake, A. L. Salzman, C. Szabó, Free Radical Biol. Med. 1998, 24, 450-459.
M. Dambrova, L. Zvejniece, E. Skapare, R. Vilskersts, B. Svalbe, L. Baumane, R. Muceniece, E. Liepinsh, Int. Immunopharmacol. 2010, 10, 455-460.
X. Bi, C. Lopez, C. Bacchi, D. Rattendi, P. Woster, Bioorg. Med. Chem. Lett. 2006, 16, 3229-3232.
E. V. Rozengart, N. E. Basova, Dokl. Biochem. Biophys. 2002, 384, 185-188.
E. V. Rozengart, N. E. Basova, B. S. Zhorov, S. N. Moralev, V. S. Saakov, A. A. Suvorov, A. E. Khovanskikh, J. Evol. Biochem. Physiol. 2003, 39, 393-404.
S. W. Gerritz, W. Zhai, S. Shi, S. Zhu, J. H. Toyn, J. E. Meredith Jr., L. G. Iben, C. R. Burton, C. F. Albright, A. C. Good, A. J. Tebben, J. K. Muckelbauer, D. M. Camac, W. Metzler, L. S. Cook, R. Padmanabha, K. A. Lentz, M. J. Sofia, M. A. Poss, J. E. Macor, J. Med. Chem. 2012, 55, 9208-9223.
N. N. Patwardhan, E. A. Morris, Y. Kharel, M. R. Raje, M. Gao, J. L. Tomsig, K. R. Lynch, W. L. Santos, J. Med. Chem. 2015, 58, 1879-1899.
Y.-W. Wang, S.-J. He, X. Feng, J. Cheng, Y.-T. Luo, L. Tian, Q. Huang, Drug Des. Dev. Ther. 2017, 11, 2421-2429.
E. G. Tse, M. Korsik, M. H. Todd, Malar. J. 2019, 18, 93.
S. Wang, Q. Zhang, Y. Zhao, J. Sun, W. Kang, F. Wang, H. Pan, G. Tang, B. Yu, Angew. Chem. Int. Ed. 2019, 58, 10558-10562;
Angew. Chem. 2019, 131, 10668-10672.
F. Marcelo, J. Jiménez-Barbero, J. Marrot, A. P. Rauter, P. Sinaÿ, Y. Blériot, Chem. Eur. J. 2008, 14, 10066-10073.
H. Ren, H. An, P. J. Hatala, W. C. Stevens Jr., J. Tao, B. He, Beilstein J. Org. Chem. 2015, 11, 2509-2520.
J. Melroy, V. Nair, Curr. Pharm. Des. 2005, 11, 3847-3852.
K. C. Nicolaou, D. Vourloumis, S. Totokotsopouos, A. Papakyriakou, H. Karsunky, H. Fernando, J. Gavrilyuk, D. Webb, A. F. Stepan, ChemMedChem 2016, 11, 31-37.
J. Shelton, X. Lu, J. A. Hollenbaugh, J. H. Cho, F. Amblard, R. F. Schinazi, Chem. Rev. 2016, 116, 14379-14455.
K. L. Seley-Radtke, M. K. Yates, Antiviral Res. 2018, 154, 66-86.
D. L. Delaware, M. S. Sharma, B. S. Iyengar, W. A. Remers, J. Antibiot. 1986, 39, 251-258.
P. M. Colman, Expert Rev. Anti-Infect. Ther. 2005, 3, 191-199.
J.-H. Jeong, B. W. Murray, S. Takayama, C.-H. Wong, J. Am. Chem. Soc. 1996, 118, 18, 4227-4234.
Y. Le Merrer, L. Gauzy, C. Gravier-Pelletier, J.-C. Depezay, Bioorg. Med. Chem. 2000, 8, 307-320.
M. Aguilar, P. Díaz-Pérez, M. I. García-Moreno, C. O. Mellet, J. M. García Fernández, J. Org. Chem. 2008, 73, 1995-1998.
P. Merino-Montiel, O. López, J. G. Fernández-Bolaños, RSC Adv. 2012, 2, 11326-11335.
A. Sevšek, L. Šrot, J. Rihter, M. Čelan, L. Q. van Ufford, E. E. Moret, N. I. Martin, R. J. Pieters, ChemMedChem 2017, 12, 483-486.
H.-M. Chen, Y.-W. Zhao, L.-H. Cao, J. Chin. Chem. Soc. 2010, 57, 1085-1090.
A. Srivastava, D. Loganathan, Glycoconj. J. 2013, 30, 769-780.
J. L. Jiménez Blanco, P. Bootello, J. M. Benito, C. Ortiz Mellet, J. M. Garcia Fernández, J. Org. Chem. 2006, 71, 5136-5143.
D. A. Barawkar, T. C. Bruice, Proc. Natl. Acad. Sci. USA 1998, 95, 11047-11052.
N. Kojima, I. E. Szabo, T. C. Bruice, Tetrahedron 2002, 58, 867-879.
M. Park, D. Canzio, T. C. Bruice, Bioorg. Med. Chem. Lett. 2008, 18, 2377-2384.
N. Kojima, A. R. Shrestha, T. Akisawa, H. Piao, H. Kizawa, Y. Ohmiya, R. Kurita, Nucleosides Nucleotides Nucleic Acids 2019, 39, 258-269.
K. Sharma, Mol. Med. 2019, 20, 1479-1487.
F. H. Darras, B. Kling, E. Sawatzky, J. Heilmann, M. Decker, Bioorg. Med. Chem. 2014, 22, 5020-5034.
D. Batista, S. Schwarz, A. Loesche, R. Csuk, P. J. Costa, M. C. Oliveira, N. M. Xavier, Pure Appl. Chem. 2016, 88, 363-379.
N. M. Xavier, S. D. Lucas, R. Jorda, S. Schwarz, A. Loesche, R. Csuk, M. C. Oliveira, Synlett 2015, 26, 2663-2672.
A. Fortuna, P. J. Costa, M. F. M. Piedade, M. C. Oliveira, N. M. Xavier, ChemPlusChem 2020, 85, 1676-1691.
N. M. Xavier, R. Goncalves-Pereira, R. Jorda, D. Hendrychová, M. C. Oliveira, Pure Appl. Chem. 2019, 91, 1085-1105.
R. Gonçalves-Pereira, M. P. Pereira, S. G. Serra, A. Loesche, R. Csuk, S. Silvestre, P. J. Costa, M. C. Oliveira, N. M. Xavier, Eur. J. Org. Chem. 2018, 2018, 2667-2681.
D. B. Tulshian, A. F. Fundes, M. Czarniecki, Bioorg. Med. Chem. Lett. 1992, 2, 515-518.
A. Santana, C. G. Francisco, E. Suarez, C. C. Gonzalez, J. Org. Chem. 2010, 75, 5371-5374.
A. G. Santana, C. C. González, Org. Lett. 2020, 22, 21, 8492-8495.
C. Girard, E. Önen, M. Aufort, S. Beauvire, E. Samson, J. Herscovici, Org. Lett. 2006, 8, 1689-1692.
V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, J. H. van Maarseveen, Org. Lett. 2006, 8, 919-922.
K. Tanaka, C. Kageyama, K. Fukase, Tetrahedron Lett. 2007, 48, 6475-6479.
N. W. Smith, B. P. Polenz, S. B. Johnson, S. V. Dzyuba, Tetrahedron Lett. 2010, 51, 550-553.
B. F. Lundt, N. L. Johansen, A. Vølund, J. Markussen, Int. J. Pept. Protein Res. 1978, 12(5), 258-268.
A. Mehta, R. Jaouhari, T. J. Benson, K. T. Douglas, Tetrahedron Lett. 1992, 33, 5441-5444.
H. P. Wessel, J. Carbohydr. Chem. 1993, 12, 1173-1186.
O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455-461.
J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, J. Med. Chem. 2012, 55, 10282-10286.
R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795-1818.
G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785-2791.
M. F. Sanner, J. Mol. Graphics 1999, 17, 57-61.
Landrum, G. A. RDKit: Open-Source Cheminformatics Software, version 2030.03.1.
K. Stierand, P. C. Maass, M. Rarey, Bioinformatics 2006, 22, 1710-1716.
PyMOL Molecular Graphics System, Version 1.2r2, DeLano Scientific LLC, San Carlos, CA (USA), 2009.
M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, M. Schroede, Nucleic Acids Res. 2021, 49, W530-W534.