Synthesis and Exploitation of the Biological Profile of Novel Guanidino Xylofuranose Derivatives

. 2022 Jul 19 ; 17 (14) : e202200180. [epub] 20220531

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35576106

The synthesis and biological evaluation of novel guanidino sugars as isonucleoside analogs is described. 5-Guanidino xylofuranoses containing 3-O-saturated/unsaturated hydrocarbon or aromatic-containing moieties were accessed from 5-azido xylofuranoses via reduction followed by guanidinylation with N,N'-bis(tert-butoxycarbonyl)-N''-triflylguanidine. Molecules comprising novel types of isonucleosidic structures including 5-guanidino 3-O-methyl-branched N-benzyltriazole isonucleosides and a guanidinomethyltriazole 3'-O-dodecyl xylofuranos-5'-yl isonucleoside were accessed. The guanidinomethyltriazole derivative and a 3-O-dodecyl (N-Boc)guanidino xylofuranose were revealed as selective inhibitors of acetylcholinesterase (Ki =22.87 and 7.49 μM, respectively). The latter also showed moderate antiproliferative effects in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells. An aminomethyltriazole 5'-isonucleoside was the most potent molecule with low micromolar GI50 values in both cells (GI50 =6.33 μM, 8.45 μM), similar to that of the drug 5-fluorouracil in MCF-7 cells. Moreover, the most bioactive compounds showed low toxicity in human fibroblasts, further indicating their interest as promising lead molecules.

Zobrazit více v PubMed

C. L. Hannon, E. V. Anslyn, The Guanidinium Group: Its Biological Role and Synthetic Analogs. in Bioorganic Chemistry Frontiers, Vol 3 (Eds. H. Dugas, F. P. Schmidtchen), Springer, Berlin, Heidelberg, 1993, pp. 193-255.

F. Saczewski, Ł. Balewski, Expert Opin. Ther. Pat. 2009, 19, 1417-1448.

R. G. S. Berlinck, A. F. Bertonha, M. Takaki, J. P. G. Rodriguez, Nat. Prod. Rep. 2017, 34, 1264-1301.

F. Blanco, B. Kelly, I. Alkorta, I. Rozas, J. Elguero, Chem. Phys. Lett. 2011, 511, 129-134.

K. Sidoryk, M. Świtalska, P. Rózga, J. Wietrzyk, I. Bujak, B. Żerek, Ł. Kaczmarek, M. Cybulski, Med. Chem. Res. 2017, 26, 3354-3366.

G. Duca, A. Aricu, K. Kuchkova, E. Secara, A. Barba, I. Dragalin, N. Ungur, G. Spengler, Nat. Prod. Res. 2019, 33, 3052-3056.

C. Li, M. R. Lewis, A. B. Gilbert, M. D. Noel, D. H. Scoville, G. W. Allman, P. B. Savage, Antimicrob. Agents Chemother. 1999, 43, 1347-1349.

A. Mishra, S. Batra, Curr. Top. Med. Chem. 2013, 13, 2011-2025.

A. Saeed, A. Bosch, M. Bettiol, D. L. N. González, M. F. Erben, Y. Lamberti, Molecules 2018, 23, 1158.

C. Pasero, I. D'Agostino, F. De Luca, C. Zamperini, D. Deodato, G. I. Truglio, F. Sannio, R. Del Prete, T. Ferraro, D. Visaggio, A. Mancini, M. B. Guglielmi, P. Visca, J.-D Docquier, M. Botta, J. Med. Chem. 2018, 61, 9162-9176.

Z. Li, Y. Meng, S. Xu, W. Shen, Z. Meng, Z. Wang, G. Ding, W. Huang, W. Xiao, J. Xu, Bioorg. Med. Chem. 2017, 25, 2772-2781.

P. H. Hsu, D. C. Chiu, K. L. Wu, P. S. Lee, J. T. Jan, Y. S. E. Cheng, K. C. Tsai, T. J. Cheng, J. M. Fang, Eur. J. Med. Chem. 2018, 154, 314-323.

S. Cuzzocrea, B. Zingarelli, P. Hake, A. L. Salzman, C. Szabó, Free Radical Biol. Med. 1998, 24, 450-459.

M. Dambrova, L. Zvejniece, E. Skapare, R. Vilskersts, B. Svalbe, L. Baumane, R. Muceniece, E. Liepinsh, Int. Immunopharmacol. 2010, 10, 455-460.

X. Bi, C. Lopez, C. Bacchi, D. Rattendi, P. Woster, Bioorg. Med. Chem. Lett. 2006, 16, 3229-3232.

E. V. Rozengart, N. E. Basova, Dokl. Biochem. Biophys. 2002, 384, 185-188.

E. V. Rozengart, N. E. Basova, B. S. Zhorov, S. N. Moralev, V. S. Saakov, A. A. Suvorov, A. E. Khovanskikh, J. Evol. Biochem. Physiol. 2003, 39, 393-404.

S. W. Gerritz, W. Zhai, S. Shi, S. Zhu, J. H. Toyn, J. E. Meredith Jr., L. G. Iben, C. R. Burton, C. F. Albright, A. C. Good, A. J. Tebben, J. K. Muckelbauer, D. M. Camac, W. Metzler, L. S. Cook, R. Padmanabha, K. A. Lentz, M. J. Sofia, M. A. Poss, J. E. Macor, J. Med. Chem. 2012, 55, 9208-9223.

N. N. Patwardhan, E. A. Morris, Y. Kharel, M. R. Raje, M. Gao, J. L. Tomsig, K. R. Lynch, W. L. Santos, J. Med. Chem. 2015, 58, 1879-1899.

Y.-W. Wang, S.-J. He, X. Feng, J. Cheng, Y.-T. Luo, L. Tian, Q. Huang, Drug Des. Dev. Ther. 2017, 11, 2421-2429.

E. G. Tse, M. Korsik, M. H. Todd, Malar. J. 2019, 18, 93.

S. Wang, Q. Zhang, Y. Zhao, J. Sun, W. Kang, F. Wang, H. Pan, G. Tang, B. Yu, Angew. Chem. Int. Ed. 2019, 58, 10558-10562;

Angew. Chem. 2019, 131, 10668-10672.

F. Marcelo, J. Jiménez-Barbero, J. Marrot, A. P. Rauter, P. Sinaÿ, Y. Blériot, Chem. Eur. J. 2008, 14, 10066-10073.

H. Ren, H. An, P. J. Hatala, W. C. Stevens Jr., J. Tao, B. He, Beilstein J. Org. Chem. 2015, 11, 2509-2520.

J. Melroy, V. Nair, Curr. Pharm. Des. 2005, 11, 3847-3852.

K. C. Nicolaou, D. Vourloumis, S. Totokotsopouos, A. Papakyriakou, H. Karsunky, H. Fernando, J. Gavrilyuk, D. Webb, A. F. Stepan, ChemMedChem 2016, 11, 31-37.

J. Shelton, X. Lu, J. A. Hollenbaugh, J. H. Cho, F. Amblard, R. F. Schinazi, Chem. Rev. 2016, 116, 14379-14455.

K. L. Seley-Radtke, M. K. Yates, Antiviral Res. 2018, 154, 66-86.

D. L. Delaware, M. S. Sharma, B. S. Iyengar, W. A. Remers, J. Antibiot. 1986, 39, 251-258.

P. M. Colman, Expert Rev. Anti-Infect. Ther. 2005, 3, 191-199.

J.-H. Jeong, B. W. Murray, S. Takayama, C.-H. Wong, J. Am. Chem. Soc. 1996, 118, 18, 4227-4234.

Y. Le Merrer, L. Gauzy, C. Gravier-Pelletier, J.-C. Depezay, Bioorg. Med. Chem. 2000, 8, 307-320.

M. Aguilar, P. Díaz-Pérez, M. I. García-Moreno, C. O. Mellet, J. M. García Fernández, J. Org. Chem. 2008, 73, 1995-1998.

P. Merino-Montiel, O. López, J. G. Fernández-Bolaños, RSC Adv. 2012, 2, 11326-11335.

A. Sevšek, L. Šrot, J. Rihter, M. Čelan, L. Q. van Ufford, E. E. Moret, N. I. Martin, R. J. Pieters, ChemMedChem 2017, 12, 483-486.

H.-M. Chen, Y.-W. Zhao, L.-H. Cao, J. Chin. Chem. Soc. 2010, 57, 1085-1090.

A. Srivastava, D. Loganathan, Glycoconj. J. 2013, 30, 769-780.

J. L. Jiménez Blanco, P. Bootello, J. M. Benito, C. Ortiz Mellet, J. M. Garcia Fernández, J. Org. Chem. 2006, 71, 5136-5143.

D. A. Barawkar, T. C. Bruice, Proc. Natl. Acad. Sci. USA 1998, 95, 11047-11052.

N. Kojima, I. E. Szabo, T. C. Bruice, Tetrahedron 2002, 58, 867-879.

M. Park, D. Canzio, T. C. Bruice, Bioorg. Med. Chem. Lett. 2008, 18, 2377-2384.

N. Kojima, A. R. Shrestha, T. Akisawa, H. Piao, H. Kizawa, Y. Ohmiya, R. Kurita, Nucleosides Nucleotides Nucleic Acids 2019, 39, 258-269.

K. Sharma, Mol. Med. 2019, 20, 1479-1487.

F. H. Darras, B. Kling, E. Sawatzky, J. Heilmann, M. Decker, Bioorg. Med. Chem. 2014, 22, 5020-5034.

D. Batista, S. Schwarz, A. Loesche, R. Csuk, P. J. Costa, M. C. Oliveira, N. M. Xavier, Pure Appl. Chem. 2016, 88, 363-379.

N. M. Xavier, S. D. Lucas, R. Jorda, S. Schwarz, A. Loesche, R. Csuk, M. C. Oliveira, Synlett 2015, 26, 2663-2672.

A. Fortuna, P. J. Costa, M. F. M. Piedade, M. C. Oliveira, N. M. Xavier, ChemPlusChem 2020, 85, 1676-1691.

N. M. Xavier, R. Goncalves-Pereira, R. Jorda, D. Hendrychová, M. C. Oliveira, Pure Appl. Chem. 2019, 91, 1085-1105.

R. Gonçalves-Pereira, M. P. Pereira, S. G. Serra, A. Loesche, R. Csuk, S. Silvestre, P. J. Costa, M. C. Oliveira, N. M. Xavier, Eur. J. Org. Chem. 2018, 2018, 2667-2681.

D. B. Tulshian, A. F. Fundes, M. Czarniecki, Bioorg. Med. Chem. Lett. 1992, 2, 515-518.

A. Santana, C. G. Francisco, E. Suarez, C. C. Gonzalez, J. Org. Chem. 2010, 75, 5371-5374.

A. G. Santana, C. C. González, Org. Lett. 2020, 22, 21, 8492-8495.

C. Girard, E. Önen, M. Aufort, S. Beauvire, E. Samson, J. Herscovici, Org. Lett. 2006, 8, 1689-1692.

V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, J. H. van Maarseveen, Org. Lett. 2006, 8, 919-922.

K. Tanaka, C. Kageyama, K. Fukase, Tetrahedron Lett. 2007, 48, 6475-6479.

N. W. Smith, B. P. Polenz, S. B. Johnson, S. V. Dzyuba, Tetrahedron Lett. 2010, 51, 550-553.

B. F. Lundt, N. L. Johansen, A. Vølund, J. Markussen, Int. J. Pept. Protein Res. 1978, 12(5), 258-268.

A. Mehta, R. Jaouhari, T. J. Benson, K. T. Douglas, Tetrahedron Lett. 1992, 33, 5441-5444.

H. P. Wessel, J. Carbohydr. Chem. 1993, 12, 1173-1186.

O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455-461.

J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, J. Med. Chem. 2012, 55, 10282-10286.

R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795-1818.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785-2791.

M. F. Sanner, J. Mol. Graphics 1999, 17, 57-61.

Landrum, G. A. RDKit: Open-Source Cheminformatics Software, version 2030.03.1.

K. Stierand, P. C. Maass, M. Rarey, Bioinformatics 2006, 22, 1710-1716.

PyMOL Molecular Graphics System, Version 1.2r2, DeLano Scientific LLC, San Carlos, CA (USA), 2009.

M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, M. Schroede, Nucleic Acids Res. 2021, 49, W530-W534.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...