The complex photochemistry of coumarin-3-carboxylic acid in acetonitrile and methanol
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA21-01799S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
857560
Horizon 2020 Framework Programme
PubMed
35578152
DOI
10.1007/s43630-022-00238-8
PII: 10.1007/s43630-022-00238-8
Knihovny.cz E-zdroje
- Klíčová slova
- Coumarin, Photochemistry, Photooxidation, Singlet oxygen,
- MeSH
- acetonitrily chemie MeSH
- kumariny * MeSH
- kyslík MeSH
- methanol * MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrily MeSH
- coumarin-3-carboxylic acid MeSH Prohlížeč
- kumariny * MeSH
- kyslík MeSH
- methanol * MeSH
- rozpouštědla MeSH
Irradiation of coumarin-3-carboxylic acid in acetonitrile and methanol solutions at 355 nm results in complex multistep photochemical transformations, strongly dependent on the solvent properties and oxygen content. A number of reaction intermediates, which themselves undergo further (photo)chemical reactions, were identified by steady-state and transient absorption spectroscopy, mass spectrometry, and NMR and product analyses. The triplet excited compound in acetonitrile undergoes decarboxylation to give a 3-coumarinyl radical that traps molecular oxygen to form 3-hydroxycoumarin as the major but chemically reactive intermediate. This compound is oxygenated by singlet oxygen, produced by coumarin-3-carboxylic acid sensitization, followed by a pyrone ring-opening reaction to give an oxalic acid derivative. The subsequent steps lead to the production of salicylaldehyde, carbon monoxide, and carbon dioxide as the final products. When 3-coumarinyl radical is not trapped by oxygen in degassed acetonitrile, it abstracts hydrogen from the solvent and undergoes triplet-sensitized [2 + 2] cycloaddition. The reaction of 3-coumarinyl radical with oxygen is largely suppressed in aerated methanol as a better H-atom donor, and coumarin is obtained as the primary product in good yields. Because coumarin derivatives are used in many photophysical and photochemical applications, this work provides detailed and sometimes surprising insights into their complex phototransformations.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 Brno Czech Republic
Zobrazit více v PubMed
Emami, S., & Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry, 102, 611–630. https://doi.org/10.1016/j.ejmech.2015.08.033 PubMed DOI
Al-Majedy, Y., Al-Amiery, A., Kadhum, A. A., & BakarMohamad, A. (2017). Antioxidant activity of coumarins. Systematic Reviews in Pharmacy, 8(1), 24. https://doi.org/10.5530/srp.2017.1.6 DOI
Matos, M. J., Vazquez-Rodriguez, S., Fonseca, A., Uriarte, E., Santana, L., & Borges, F. (2017). Heterocyclic antioxidants in nature: Coumarins. Current Organic Chemistry, 21(4), 311–324. https://doi.org/10.2174/1385272820666161017170652 DOI
Grover, J., & Jachak, S. M. (2015). Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 5(49), 38892–38905. https://doi.org/10.1039/C5RA05643H DOI
Hassan, M. Z., Osman, H., Ali, M. A., & Ahsan, M. J. (2016). Therapeutic potential of coumarins as antiviral agents. European Journal of Medicinal Chemistry, 123, 236–255. https://doi.org/10.1016/j.ejmech.2016.07.056 PubMed DOI PMC
Peng, X.-M., Damu, G. L. V., & Zhou, H. (2013). Current developments of coumarin compounds in medicinal chemistry. Current Pharmaceutical Design, 19(21), 3884–3930. https://doi.org/10.2174/1381612811319210013 PubMed DOI
Dorlars, A., Schellhammer, C. W., & Schroeder, J. (1975). Heterocycles as structural units in new optical brighteners. Angewandte Chemie International Edition, 14(10), 665–679. https://doi.org/10.1002/anie.197506651 DOI
Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S., & Lin, W. (2019). Coumarin-based small-molecule fluorescent chemosensors. Chemical Reviews, 119(18), 10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145 PubMed DOI
Perkin, W. (1868). VI.—On the artificial production of coumarin and formation of its homologues. Journal of the Chemical Society, 21, 53–63. https://doi.org/10.1039/JS8682100053 DOI
Bogdał, D. (1998). Coumarins: Fast synthesis by Knoevenagel condensation under microwave irradiation. Journal of Chemical Research, Synopses. https://doi.org/10.1039/A801724G DOI
Kuznetsova, ΝA., & Kaliya, ΟL. (1992). The photochemistry of coumarins. Russian Chemical Reviews, 61(7), 683–696. https://doi.org/10.1070/RC1992v061n07ABEH000992 DOI
D’Auria, M., & Racioppi, R. (2004). The photodimerisation of coumarin. Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 557–559. https://doi.org/10.1016/j.jphotochem.2004.02.012 DOI
Anet, R. (1962). The photodimers of coumarin and related compounds. Canadian Journal of Chemistry, 40(7), 1249–1257. https://doi.org/10.1139/v62-193 DOI
Hammond, G. S., Stout, C. A., & Lamola, A. A. (1964). Mechanisms of photochemical reactions in solution. XXV. The photodimerization of coumarin. Journal of the American Chemical Society, 86(15), 3103–3106. https://doi.org/10.1021/ja01069a026 DOI
Yu, X., Scheller, D., Rademacher, O., & Wolff, T. (2003). Selectivity in the photodimerization of 6-alkylcoumarins. The Journal of Organic Chemistry, 68(19), 7386–7399. https://doi.org/10.1021/jo034627m PubMed DOI
Mustafa, A., Kamel, M., & Allam, M. A. (1957). Dimerization reactions in sunlight. V. 1 Photodimerization of substituted coumarins. The Journal of Organic Chemistry, 22(8), 888–891. https://doi.org/10.1021/jo01359a008 DOI
Belfield, K. D., Bondar, M. V., Liu, Y., & Przhonska, O. V. (2003). Photophysical and photochemical properties of 5, 7-dimethoxycoumarin under one-and two-photon excitation. Journal of Physical Organic Chemistry, 16(1), 69–78. https://doi.org/10.1002/poc.576 DOI
Brahmachari, G., & Karmakar, I. (2020). Visible light-induced and singlet oxygen-mediated photochemical conversion of 4-hydroxy-α-benzopyrones to 2-hydroxy-3-oxo-2, 3-dihydrobenzofuran-2-carboxamides/carboxylates using rose bengal as a photosensitizer. The Journal of Organic Chemistry, 85(14), 8851–8864. https://doi.org/10.1021/acs.joc.0c00726 PubMed DOI
Náfrádi, M., Farkas, L., Alapi, T., Hernádi, K., Kovács, K., Wojnárovits, L., & Takács, E. (2020). Application of coumarin and coumarin-3-carboxylic acid for the determination of hydroxyl radicals during different advanced oxidation processes. Radiation Physics and Chemistry, 170, 108610. https://doi.org/10.1016/j.radphyschem.2019.108610 DOI
Manevich, Y., Held, K. D., & Biaglow, J. E. (1997). Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiation Research, 148(6), 580–591. https://doi.org/10.2307/3579734 PubMed DOI
Sjöstrand, T. (1949). Endogenous formation of carbon monoxide in man. Nature, 164(4170), 580–581. https://doi.org/10.1038/164580a0 PubMed DOI
Motterlini, R., & Otterbein, L. E. (2010). The therapeutic potential of carbon monoxide. Nature Reviews Drug Discovery, 9(9), 728–743. https://doi.org/10.1038/nrd3228 PubMed DOI
Romao, C. C., Blattler, W. A., Seixas, J. D., & Bernardes, G. J. (2012). Developing drug molecules for therapy with carbon monoxide. Chemical Society Reviews, 41(9), 3571–3583. https://doi.org/10.1039/C2CS15317C PubMed DOI
Heinemann, S. H., Hoshi, T., Westerhausen, M., & Schiller, A. (2014). Carbon monoxide–physiology, detection and controlled release. Chemical Communications, 50(28), 3644–3660. https://doi.org/10.1039/C3CC49196J PubMed DOI
Martinek, M., Filipova, L., Galeta, J., Ludvikova, L., & Klan, P. (2016). Photochemical formation of dibenzosilacyclohept-4-yne for Cu-free click chemistry with azides and 1,2,4,5-tetrazines. Organic Letters, 18(19), 4892–4895. https://doi.org/10.1021/acs.orglett.6b02367 PubMed DOI
Russo, M., Štacko, P., Nachtigallová, D., & Klán, P. (2020). Mechanisms of orthogonal photodecarbonylation reactions of 3-hydroxyflavone-based acid–base forms. The Journal of Organic Chemistry, 85(5), 3527–3537. https://doi.org/10.1021/acs.joc.9b03248 PubMed DOI
Palao, E., Slanina, T. S., Muchová, L., Solomek, T., Vítek, L., & Klán, P. (2016). Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. Journal of the American Chemical Society, 138(1), 126–133. https://doi.org/10.1021/jacs.5b10800 PubMed DOI
Kottelat, E., & Fabio, Z. (2017). Visible light-activated photoCORMs. Inorganics, 5(2), 24. https://doi.org/10.3390/inorganics5020024 DOI
Antony, L. A. P., Slanina, T. S., Šebej, P., Solomek, T., & Klán, P. (2013). Fluorescein analogue xanthene-9-carboxylic acid: A transition-metal-free CO releasing molecule activated by green light. Organic Letters, 15(17), 4552–4555. https://doi.org/10.1021/ol4021089 PubMed DOI
Krauter, C. M., Mohring, J., Buckup, T., Pernpointner, M., & Motzkus, M. (2013). Ultrafast branching in the excited state of coumarin and umbelliferone. Physical Chemistry Chemical Physics, 15(41), 17846–17861. https://doi.org/10.1039/C3CP52719K PubMed DOI
Kirkiacharian, B. S., Santus, R., & Helene, C. (1972). The phosphorescent triplet state of some hydroxycoumarins. Photochemistry and Photobiology, 16(5), 455–458. https://doi.org/10.1111/j.1751-1097.1972.tb06313.x PubMed DOI
Specht, D. P., Martic, P. A., & Farid, S. (1982). Ketocoumarins: A new class of triplet sensitizers. Tetrahedron, 38(9), 1203–1211. https://doi.org/10.1016/0040-4020(82)85104-1 DOI
Polyansky, D. E., & Neckers, D. C. (2005). Photodecomposition of Organic Peroxides Containing Coumarin Chromophore: Spectroscopic Studies. The Journal of Physical Chemistry A, 109(12), 2793–2800. https://doi.org/10.1021/jp044554q PubMed DOI
Kawata, H., Ichikawa, S., Kumagai, T., & Niizuma, S. (2002). A new type of photodimerization reaction for coumarin derivatives. Tetrahedron Letters, 43(29), 5161–5163. https://doi.org/10.1016/S0040-4039(02)00969-3 DOI
Darmanyan, A. P., & Foote, C. S. (1993). Solvent effects on singlet oxygen yield from n, π* and π, π* triplet carbonyl compounds. Journal of Physical Chemistry, 97(19), 5032–5035. https://doi.org/10.1021/j100121a029 DOI
Reinhard, S., & Ebrahim, A. (1990). Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen. Journal of Physical Chemistry, 94(10), 4377–4378. https://doi.org/10.1021/j100373a096 DOI
Epelde-Elezcano, N., Martínez-Martínez, V., Peña-Cabrera, E., Gómez-Durán, C. F. A., Arbeloa, I. L., & Lacombe, S. (2016). Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: Towards a solvent-independent standard in the vis region. RSC Advances, 6(48), 41991–41998. https://doi.org/10.1039/C6RA05820E DOI
Wolfbeis, O. S. (1981). Solvent and acidity dependence of the absorption and fluorescence spectra of 3-hydroxycoumarin. Zeitschrift für Physikalische Chemie, 125(1), 15–20. https://doi.org/10.1524/zpch.1981.125.1.015 DOI
Tauer, E., & Grellmann, K.-H. (1986). Photochemische Reaktionen von 3-Phenyl-2H-1,4-benzoxazin-2-on und von verwandten Verbindungen im Singulett- und Triplett-Zustand. Chemische Berichte, 119(1), 215–228. https://doi.org/10.1002/cber.19861190120 DOI
Bayrakceken, F. (2008). Triplet-triplet optical energy transfer from benzophenone to naphthalene in the vapor phase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2), 603–608. https://doi.org/10.1016/j.saa.2007.12.045 DOI
Ronzani, F., Arzoumanian, E., Blanc, S., Bordat, P., Pigot, T., Cugnet, C., Oliveros, E., Sarakha, M., Richard, C., & Lacombe, S. (2013). Efficient cyanoaromatic photosensitizers for singlet oxygen production: Synthesis and characterization of the transient reactive species. Physical Chemistry Chemical Physics, 15(40), 17219–17232. https://doi.org/10.1039/C3CP52168K PubMed DOI
Olea, A. F., Worrall, D. R., Wilkinson, F., Williams, S. L., & Abdel-Shafi, A. A. (2002). Solvent effects on the photophysical properties of 9,10-dicyanoanthracene. Physical Chemistry Chemical Physics, 4(2), 161–167. https://doi.org/10.1039/B104806F DOI
Kikuchi, K., Sato, C., Watabe, M., Ikeda, H., Takahashi, Y., & Miyashi, T. (1993). New aspects of fluorescence quenching by molecular oxygen. Journal of the American Chemical Society, 115(12), 5180–5184. https://doi.org/10.1021/ja00065a033 DOI
García, N. A. (1994). New trends in photobiology: Singlet-molecular-oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview. Journal of Photochemistry and Photobiology B: Biology, 22(3), 185–196. https://doi.org/10.1016/1011-1344(93)06932-S DOI
Mártire, D. O., Braslavsky, S. E., & García, N. A. (1991). Sensitized photo-oxidation of dihydroxybenzenes and chlorinated derivatives. A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 61(1), 113–124. https://doi.org/10.1016/1010-6030(91)85079-V DOI
Nowak, P. M., Sagan, F., & Mitoraj, M. P. (2017). Origin of remarkably different acidity of hydroxycoumarins-joint experimental and theoretical studies. The Journal of Physical Chemistry B, 121(17), 4554–4561. https://doi.org/10.1021/acs.jpcb.7b01849 PubMed DOI
Kaljurand, I., Kütt, A., Sooväli, L., Rodima, T., Mäemets, V., Leito, I., & Koppel, I. A. (2005). Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: Unification of different basicity scales. The Journal of Organic Chemistry, 70(3), 1019–1028. https://doi.org/10.1021/jo048252w PubMed DOI
Chattopadhyay, S. K., Kumar, C. V., & Das, P. K. (1985). Substituent effects in the quenching of acetophenone and benzophenone triplets by oxygen and the di-tert-butylnitroxy radical, and the efficiency of singlet oxygen photogeneration. Journal of Photochemistry, 30(1), 81–91. https://doi.org/10.1016/0047-2670(85)87007-6 DOI
Nawrat, C. C., Jamison, C. R., Slutskyy, Y., MacMillan, D. W. C., & Overman, L. E. (2015). Oxalates as activating groups for alcohols in visible light photoredox catalysis: Formation of quaternary centers by redox-neutral fragment coupling. Journal of the American Chemical Society, 137(35), 11270–11273. https://doi.org/10.1021/jacs.5b07678 PubMed DOI PMC
Tan, N.-D., Yuan, Y., Yin, J.-H., & Xu, N. (2017). Quenching of salicylaldehyde-based luminescence probe via Dakin reaction: approach for highly selective detection of hydrogen peroxide. Bulletin of the Korean Chemical Society, 38(8), 875–879. https://doi.org/10.1002/bkcs.11190 DOI
Epling, G. A., & Lopes, A. (1977). Fragmentation pathways in the photolysis of phenylacetic acid. Journal of the American Chemical Society, 99(8), 2700–2704. https://doi.org/10.1021/ja00450a050 DOI
Wan, P., & Budac, D. (1995). Photodecarboxylation of acids and lactones. In W. M. Horspool & P.-S. Song (Eds.), CRC handbook of organic photochemistry and photobiology (pp. 384–392). Boca Raton: CRC Press Inc.
Asiedu, A., & Kumar, S. (2019). Kinetics and optimization of catalytic transfer hydrogenation of WCO using 2-propanol as a hydrogen donor over NiOx–MoOx–CoOx/zeolite. Industrial & Engineering Chemistry Research, 58(35), 15787–15802. https://doi.org/10.1021/acs.iecr.9b00648 DOI
Naguib, Y. M., Steel, C., Cohen, S. G., & Young, M. A. (1987). Photoreduction of benzophenone by acetonitrile: Correlation of rates of hydrogen abstraction from RH with the ionization potentials of the radicals R. Journal of Physical Chemistry, 91(11), 3033–3036. https://doi.org/10.1021/j100295a078 DOI
Chu, X.-Q., Ge, D., Shen, Z.-L., & Loh, T.-P. (2018). Recent advances in radical-initiated C (sp3)–H bond oxidative functionalization of alkyl nitriles. ACS Catalysis, 8(1), 258–271. https://doi.org/10.1021/acscatal.7b03334 DOI
Gordeeva, N., Kirpichenok, M., Yufit, D., Struchkov, Y. T., & Grandberg, I. (1990). Photochemical reactions of 7-aminocoumarins. 7. Reaction of 3-iodo-4-methyl-7-diethylcoumarin with olefins. Chemistry of Heterocyclic Compounds, 26(8), 863–869. https://doi.org/10.1007/BF00480857 DOI
Bach, R. D., Ayala, P. Y., & Schlegel, H. (1996). A reassessment of the bond dissociation energies of peroxides. An ab initio study. Journal of the American Chemical Society, 118(50), 12758–12765. https://doi.org/10.1021/ja961838i DOI
Kawata, H., Kumagai, T., Morita, T., & Niizuma, S. (2001). Photodecarboxylation of chromone-2-carboxylic acid in aerated and deaerated ethanol solution. Journal of Photochemistry and Photobiology A: Chemistry, 138(3), 281–287. https://doi.org/10.1016/S1010-6030(00)00367-1 DOI
Xu, L., & Porter, N. A. (2014). Reactivities and products of free radical oxidation of cholestadienols. Journal of the American Chemical Society, 136(14), 5443–5450. https://doi.org/10.1021/ja5011674 PubMed DOI PMC
Vanoye, L., Wang, J., Pablos, M., de Bellefon, C., & Favre-Réguillon, A. (2016). Epoxidation using molecular oxygen in flow: Facts and questions on the mechanism of the Mukaiyama epoxidation. Catalysis Science & Technology, 6(13), 4724–4732. https://doi.org/10.1039/C6CY00309E DOI
Mahamat Ahmat, Y., Madadi, S., Charbonneau, L., & Kaliaguine, S. (2021). Epoxidation of terpenes. Catalysts, 11(7), 847–864. https://doi.org/10.3390/catal11070847 DOI
Lake, B. G., Evans, J. G., Chapuis, F., Walters, D. G., & Price, R. J. (2002). Studies on the disposition, metabolism and hepatotoxicityof coumarin in the rat and Syrian hamster. Food and Chemical Toxicology, 40, 809–823. https://doi.org/10.1016/S0278-6915(02)00036-4 PubMed DOI
Luz, I., León, A., Boronat, M., i Xamena, F. L., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catalysis Science & Technology, 3(2), 371–379. https://doi.org/10.1039/C2CY20449E DOI
Kelly, D. P., & Pinhey, J. T. (1964). The photochemical rearrangement of phenoxyacetic acids. Tetrahedron Letters, 5(46), 3427–3429. https://doi.org/10.1016/S0040-4039(01)89405-3 DOI
Slanina, T., Shrestha, P., Palao, E., Kand, D., Peterson, J. A., Dutton, A. S., Rubinstein, N., Weinstain, R., Winter, A. H., & Klán, P. (2017). In search of the perfect photocage: structure-reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. Journal of the American Chemical Society, 139(42), 15168–15175. https://doi.org/10.1021/jacs.7b08532 PubMed DOI
Marek-Urban, P. H., Urban, M., Wiklinska, M., Paplinska, K., Wozniak, K., Blacha-Grzechnik, A., & Durka, K. (2021). Heavy-atom free spiro organoboron complexes as triplet excited states photosensitizers for singlet oxygen activation. The Journal of Organic Chemistry, 86(18), 12714–12722. https://doi.org/10.1021/acs.joc.1c01254 PubMed DOI PMC
Charles, T., & Christian, W. (1995). Determination of the parameters controlling singlet oxygen production via oxygen and heavy-atom enhancement of triplet yields. Journal of Physical Chemistry, 99(24), 9831–9837. https://doi.org/10.1021/j100024a026 DOI
Fenical, W. H., Kearns, D. R., & Radlick, P. (1969). Mechanism of the addition of 1∆g excited oxygen to olefins. Evidence for a 1,2-dioxetane intermediate. Journal of the American Chemical Society, 91(12), 3396–3398. https://doi.org/10.1021/ja01040a066 DOI
Kearns, D. R. (1969). Selection rules for singlet-oxygen reactions. Concerted addition reactions. Journal of the American Chemical Society, 91(24), 6554–6563. https://doi.org/10.1021/ja01052a003 DOI
Kearns, D. R. (1971). Physical and chemical properties of singlet molecular oxygen. Chemical Reviews, 71(4), 395–427. https://doi.org/10.1021/cr60272a004 DOI
La Cruz, L. K., & Caestecker, M. (2021). Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chemical Science, 12(31), 10649–10654. https://doi.org/10.1039/D1SC02711E DOI
Dong, J.-L., Yu, L.-S.-H., & Xie, J.-W. (2018). A simple and versatile method for the formation of acetals/ketals using trace conventional acids. ACS Omega, 3(5), 4974–4985. https://doi.org/10.1021/acsomega.8b00159 PubMed DOI PMC
Daw, G., Regan, A. C., Watt, C. I. F., & Wood, E. (2013). Steric effects and mechanism in the formation of hemi-acetals from aliphatic aldehydes. Journal of Physical Organic Chemistry, 26(12), 1048–1057. https://doi.org/10.1002/poc.3138 DOI
Hajimohammadi, M., Safari, N., Mofakham, H., & Shaabani, A. (2010). A new and efficient aerobic oxidation of aldehydes to carboxylic acids with singlet oxygen in the presence of porphyrin sensitizers and visible light. Tetrahedron Letters, 51(31), 4061–4065. https://doi.org/10.1016/j.tetlet.2010.05.124 DOI
Al-Nu’airat, J., Dlugogorski, B. Z., Gao, X., Zeinali, N., Skut, J., Westmoreland, P. R., Oluwoye, I., & Altarawneh, M. (2018). Reaction of phenol with singlet oxygen. Physical Chemistry Chemical Physics, 21(1), 171–183. https://doi.org/10.1039/C8CP04852E PubMed DOI
Belluti, F., Uliassi, E., Veronesi, G., Bergamini, C., Kaiser, M., Brun, R., Viola, A., Fato, R., Michels, P. A., Krauth-Siegel, R. L., Cavalli, A., & Bolognesi, M. L. (2014). Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi. ChemMedChem, 9(2), 371–382. https://doi.org/10.1002/cmdc.201300399 PubMed DOI
Kalgutkar, A. S., Kozak, K. R., Crews, B. C., Hochgesang, G. P., & Marnett, L. J. (1998). Covalent modification of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators. Journal of Medicinal Chemistry, 41(24), 4800–4818. https://doi.org/10.1021/jm980303s PubMed DOI
Ma, Y., Luo, W., Quinn, P. J., Liu, Z., & Hider, R. C. (2004). Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors. Journal of Medicinal Chemistry, 47(25), 6349–6362. https://doi.org/10.1021/jm049751s PubMed DOI
Stackova, L., Muchova, E., Russo, M., Slavicek, P., Stacko, P., & Klan, P. (2020). Deciphering the structure-property relations in substituted heptamethine cyanines. The Journal of Organic Chemistry, 85(15), 9776–9790. https://doi.org/10.1021/acs.joc.0c01104 PubMed DOI
Germán Günther, S., Else Lemp, M., & Zanocco, A. L. (2002). Determination of chemical rate constants in singlet molecular oxygen reactions by using 1,4-dimethylnaphthalene endoperoxide. Journal of Photochemistry and Photobiology A: Chemistry, 151(1–3), 1–5. https://doi.org/10.1016/S1010-6030(02)00175-2 DOI
Madea, D., Mahvidi, S., Chalupa, D., Mujawar, T., Dvořák, A., Muchová, L., Janoš, J. I., Slavicek, P., Švenda, J., & Vítek, L. (2020). Wavelength-dependent photochemistry and biological relevance of a bilirubin dipyrrinone subunit. The Journal of Organic Chemistry, 85(20), 13015–13028. https://doi.org/10.1021/acs.joc.0c01673 PubMed DOI