• This record comes from PubMed

Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer

. 2021 ; 4 (2) : 264-297. [epub] 20210619

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article, Review

Cancer is one of the biggest healthcare concerns in our century, a disease whose treatment has become even more difficult following reports of drug-resistant tumors. When this happens, chemotherapy treatments fail or decrease in efficiency, leading to catastrophic consequences to the patient. This discovery, along with the fact that drug resistance limits the efficacy of current treatments, has led to a new wave of discovery for new methods of treatment. The use of nanomedicine has been widely studied in current years as a way to effectively fight drug resistance in cancer. Research in the area of cancer nanotechnology over the past decades has led to tremendous advancement in the synthesis of tailored nanoparticles with targeting ligands that can successfully attach to chemotherapy-resistant cancer by preferentially accumulating within the tumor region through means of active and passive targeting. Consequently, these approaches can reduce the off-target accumulation of their payload and lead to reduced cytotoxicity and better targeting. This review explores some categories of nanocarriers that have been used in the treatment of drug-resistant cancers, including polymeric, viral, lipid-based, metal-based, carbon-based, and magnetic nanocarriers, opening the door for an exciting field of discovery that holds tremendous promise in the treatment of these tumors.

See more in PubMed

Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14:21087–113. doi: 10.3390/ijms141021087. PubMed DOI PMC

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI

Greenivald P, Dunn BK. Landmarks in the history of cancer epidemiology. Cancer Res. 2009;69:2151–62. doi: 10.1158/0008-5472.CAN-09-0416. PubMed DOI

Van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–17. doi: 10.1038/s41565-019-0567-y. PubMed DOI PMC

Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:1–18. doi: 10.1038/natrevmats.2017.24. PubMed DOI PMC

Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors: The main reason for therapeutic failure. Arzneimittelforschung. 2008;58:261–4. doi: 10.1055/s-0031-1296504. PubMed DOI

Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6:1769–92. doi: 10.3390/cancers6031769. PubMed DOI PMC

Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27. doi: 10.1146/annurev.med.53.082901.103929. PubMed DOI

Yang J, Yu Y, Liu W, et al. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol. 2017;9:71–7. doi: 10.2147/RRU.S118966. PubMed DOI PMC

Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 2016;43:723–37. doi: 10.1111/1440-1681.12581. PubMed DOI

Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev. 2017;11:19–25. doi: 10.4081/oncol.2017.326. PubMed DOI PMC

Suzawa K, Offin M, Schoenfeld AJ, et al. Acquired MET Exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR -mutated lung cancer. JCO Precis Oncol. 2019;3:1–8. doi: 10.1200/PO.19.00011. PubMed DOI PMC

Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC

Hermawan A, Wagner E, Roidl A. Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep. 2016;35:1732–40. doi: 10.3892/or.2015.4509. PubMed DOI

Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016;22:6876–89. doi: 10.3748/wjg.v22.i30.6876. PubMed DOI PMC

Kim SJ, Kim S, Kim DW, et al. Alterations in PD-L1 expression associated with acquisition of resistance to ALK inhibitors in ALK-rearranged lung cancer. Cancer Res Treat. 2019;51:1231–40. doi: 10.4143/crt.2018.486. PubMed DOI PMC

Toth RK, Tran JD, Muldong MT, et al. Hypoxia-induced PIM kinase and laminin-activated integrin $α$6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. Am J Clin Exp Urol. 2019;7:297–312. PubMed PMC

Wang S, Liu F, Zhu J, et al. DNA repair genes ERCC1 and BRCA1 expression in non-small cell lung cancer chemotherapy drug resistance. Med Sci Monit. 2016;22:1999–2005. doi: 10.12659/msm.896606. PubMed DOI PMC

Nogales V, Reinhold WC, Varma S, et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget. 2016;7:3084–97. doi: 10.18632/oncotarget.6413. PubMed DOI PMC

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. PubMed DOI

Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and Lesion-Specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6:147–53. doi: 10.1158/2159-8290.CD-15-1283. PubMed DOI PMC

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7:339–48. doi: 10.15171/apb.2017.041. PubMed DOI PMC

Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:965. doi: 10.3390/molecules21070965. PubMed DOI PMC

Elaskalani O, Razak NBA, Falasca M, Metharom P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointestinal Oncol. 2017;9:37–41. doi: 10.4251/wjgo.v9.i1.37. PubMed DOI PMC

Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget. 2017;8:56659–71. doi: 10.18632/oncotarget.17855. PubMed DOI PMC

Gao M, Deng J, Liu F, et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials. 2019;223:119486. doi: 10.1016/j.biomaterials.2019.119486. PubMed DOI

Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6:44. doi: 10.1186/s40169-017-0175-0. PubMed DOI PMC

Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017;14:228–41. doi: 10.20892/j.issn.2095-3941.2017.0052. PubMed DOI PMC

Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Del. 2015;12:129–42. doi: 10.1517/17425247.2014.950564. PubMed DOI

Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep. 2017;38:611–24. doi: 10.3892/or.2017.5718. PubMed DOI PMC

Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. doi: 10.2147/IJN.S146315. PubMed DOI PMC

Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surfaces B Biointerfaces. 2019;173:581–90. doi: 10.1016/j.colsurfb.2018.10.022. PubMed DOI

Raveendran R. Chapter 12 - Polymeric micelles: Smart nanocarriers for anticancer drug delivery. In: Sharma CP, editor. Drug Delivery Nanosystems for Biomedical Applications. Elsevier; 2018. pp. 255–73.

Yang X, Lian K, Tan Y, et al. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr Polym. 2020;229:115435. doi: 10.1016/j.carbpol.2019.115435. PubMed DOI

Yao Q, Liu Y, Kou L, et al. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine. 2019;19:71–80. doi: 10.1016/j.nano.2019.03.012. PubMed DOI PMC

Zhen S, Yi X, Zhao Z, et al. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials. 2019;218:119330. doi: 10.1016/j.biomaterials.2019.119330. PubMed DOI

Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur Polym J. 2020;126:109546. doi: 10.1016/j.eurpolymj.2020.109546. DOI

Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol. 2017;8:261. doi: 10.3389/fphar.2017.00261. PubMed DOI PMC

Rajani C, Borisa P, Karanwad T, et al. 7 - Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier. In: Chauhan A, Kulhari H, editors. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. pp. 151–98.

Siriviriyanun A, Tsai YJ, Voon SH, et al. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C. 2018;89:307–15. doi: 10.1016/j.msec.2018.04.020. PubMed DOI

Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surfaces B Biointerfaces. 2017;155:257–65. doi: 10.1016/j.colsurfb.2017.04.029. PubMed DOI

Fan Y, Yuan S, Huo M, et al. Spatial controlled multistage nanocarriers through hybridization of dendrimers and gelatin nanoparticles for deep penetration and therapy into tumor tissue. Nanomedicine. 2017;13:1399–410. doi: 10.1016/j.nano.2017.01.008. PubMed DOI

Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm. 2019;557:329–41. doi: 10.1016/j.ijpharm.2018.12.069. PubMed DOI

Liang S, Sun C, Yang P, et al. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials. 2020;240:119850. doi: 10.1016/j.biomaterials.2020.119850. PubMed DOI

Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm. 2019;136:18–28. doi: 10.1016/j.ejpb.2019.01.006. PubMed DOI PMC

Gouveia M, Figueira J, Jardim MG, et al. Poly(alkylidenimine) dendrimers functionalized with the organometallicmoiety [Ru(ν 5-C5H5)(PPh3)2]+ as promising drugs against cisplatin-resistant cancer cells and humanmesenchymal stem cells. Molecules. 2018;23:1471. doi: 10.3390/molecules23061471. PubMed DOI PMC

Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol. 2014;18:104–11. doi: 10.1016/j.coph.2014.09.017. PubMed DOI

Dan N. Chapter 1 - vesicle-based drug carriers: liposomes, polymersomes, and niosomes. In: Grumezescu AM, editor. Design and Development of New Nanocarriers. William Andrew Publishing; 2018. pp. 1–55.

Khan MA, Ali S, Venkatraman SS, et al. Fabrication of poly (butadiene-block-ethylene oxide) based amphiphilic polymersomes: an approach for improved oral pharmacokinetics of Sorafenib. Int J Pharm. 2018;542:196–204. doi: 10.1016/j.ijpharm.2018.03.023. PubMed DOI

Köthe T, Martin S, Reich G, Fricker G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int J Pharm. 2020;579:119087. doi: 10.1016/j.ijpharm.2020.119087. PubMed DOI

Liu Q, Song L, Chen S, et al. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23–33. doi: 10.1016/j.biomaterials.2016.10.027. PubMed DOI

Zhu D, Wu S, Hu C, et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater. 2017;58:399–412. doi: 10.1016/j.actbio.2017.06.017. PubMed DOI

Zavvar T, Babaei M, Abnous K, et al. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm. 2020;578:119091. doi: 10.1016/j.ijpharm.2020.119091. PubMed DOI

Simón-Gracia L, Hunt H, Scodeller PD, et al. Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther. 2016;15:670. doi: 10.1158/1535-7163.MCT-15-0713-T. PubMed DOI PMC

Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci. 2016;105:1741–50. doi: 10.1016/j.xphs.2016.02.021. PubMed DOI

Alibolandi M, Abnous K, Hadizadeh F, et al. Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J Control Release. 2016;241:45–56. doi: 10.1016/j.jconrel.2016.09.012. PubMed DOI

Qin Y, Zhang Z, Huang C, et al. Folate-targeted redox-responsive polymersomes loaded with chemotherapeutic drugs and tariquidar to overcome drug resistance. J Biomed Nanotechnol. 2018;14:1705–18. doi: 10.1166/jbn.2018.2623. PubMed DOI

Franke CE, Czapar AE, Patel RB, Steinmetz NF. Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells. Mol Pharm. 2018;15:2922–31. doi: 10.1021/acs.molpharmaceut.7b00466. PubMed DOI

Perillo E, Porto S, Falanga A, et al. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget. 2016;7:4077–92. doi: 10.18632/oncotarget.6013. PubMed DOI PMC

Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe. 2014;15:260–5. doi: 10.1016/j.chom.2014.01.002. PubMed DOI PMC

Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell. 2016;30:108–19. doi: 10.1016/j.ccell.2016.05.012. PubMed DOI PMC

Mahoney DJ, Lefebvre C, Allan K, et al. Virus-Tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell. 2011;20:443–56. doi: 10.1016/j.ccr.2011.09.005. PubMed DOI

Muscolini M, Castiello L, Palermo E, et al. SIRT1 modulates the sensitivity of prostate cancer cells to vesicular stomatitis virus oncolysis. J Virol. 2019;93:e00626–19. doi: 10.1128/JVI.00626-19. PubMed DOI PMC

Dold C, Rodriguez Urbiola C, Wollmann G, et al. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics. 2016;3:16021. doi: 10.1038/mto.2016.21. PubMed DOI PMC

Martikainen M, Niittykoski M, von und zu Fraunberg M, et al. MicroRNA-attenuated clone of virulent semliki forest virus overcomes antiviral type i interferon in resistant mouse CT-2A glioma. J Virol. 2015;89:10637–47. doi: 10.1128/JVI.01868-15. PubMed DOI PMC

Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol. 2020;57:3545–55. doi: 10.1007/s13197-020-04360-2. PubMed DOI PMC

Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol. 2020;56:101509. doi: 10.1016/j.jddst.2020.101509. DOI

Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC

Jampílek J, Kráľová K. Chapter 8 - recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu AM, editor. Nanoarchitectonics in Biomedicine. William Andrew Publishing; 2019. pp. 219–94.

Chauhan SB, Gupta V. Recent advances in liposome. Res J Pharm Technol. 2020;13:2053–8. doi: 10.5958/0974-360X.2020.00369.8. DOI

Kiaie N, Gorabi AM, Penson PE, et al. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today. 2020;25:58–72. doi: 10.1016/j.drudis.2019.09.005. PubMed DOI

Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–63. doi: 10.1016/j.jconrel.2019.12.023. PubMed DOI

Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res. 2016;26:276–87. doi: 10.3109/08982104.2015.1117489. PubMed DOI

Chen M, Song F, Liu Y, et al. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. Nanoscale. 2019;11:3814–26. doi: 10.1039/c8nr06218h. PubMed DOI

Feng X, Li L, Jiang H, et al. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun. 2014;444:376–81. doi: 10.1016/j.bbrc.2014.01.053. PubMed DOI

Qiu L, Gao M, Xu Y. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine. 2015;10:6615. doi: 10.2147/IJN.S91463. PubMed DOI PMC

Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38:885–96. doi: 10.1038/aps.2017.10. PubMed DOI PMC

Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res. 2020 doi: 10.1007/s13346-020-00720-9. PubMed

Shen Q, Shen Y, Jin F, Du Y, Ying X. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res. 2020;30:12–20. doi: 10.1080/08982104.2019.1579838. PubMed DOI

Li X, Wu X, Yang H, et al. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother. 2019;117:109072. doi: 10.1016/j.biopha.2019.109072. PubMed DOI

Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol. 2020;55:101458. doi: 10.1016/j.jddst.2019.101458. DOI

Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9:474. doi: 10.3390/nano9030474. PubMed DOI PMC

Abdelaziz HM, Freag MS, Elzoghby AO. Chapter 5 - solid lipid nanoparticle-based drug delivery for lung cancer. In: Kesharwani P, editor. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Academic Press; 2019. pp. 95–121.

Rajabi M, Mousa SA. Lipid nanoparticles and their application in nanomedicine. Curr Pharm Biotechnol. 2016;17:662–72. doi: 10.2174/1389201017666160415155457. PubMed DOI

Mihai MM, Holban AM, Călugăreanu A, Orzan OA. Chapter 11 - Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Elsevier; 2017. pp. 285–306.

Trapani A, Mandracchia D, Tripodo G, et al. Solid lipid nanoparticles made of self-emulsifying lipids for efficient encapsulation of hydrophilic substances. AIP Conference Proceedings 2145, 20004. AIP Publishing LLC; 2019.

Dumont C, Bourgeois S, Fessi H, Dugas PY, Jannin V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm. 2019;565:409–18. doi: 10.1016/j.ijpharm.2019.05.037. PubMed DOI

Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol. 2020;25:936–48. doi: 10.1080/10837450.2020.1759630. PubMed DOI

Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol. 2020;151:830–44. doi: 10.1016/j.ijbiomac.2020.02.132. PubMed DOI

Das Gupta S, Suh N. Tocopherols in cancer: an update. Mol Nutr Food Res. 2016;60:1354–63. doi: 10.1002/mnfr.201500847. PubMed DOI PMC

Affram KO, Smith T, Ofori E, et al. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol. 2020;55:101374. doi: 10.1016/j.jddst.2019.101374. PubMed DOI PMC

Oliveira MS, Aryasomayajula B, Pattni B, et al. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm. 2016;512:292–300. doi: 10.1016/j.ijpharm.2016.08.049. PubMed DOI

Jiang T, Zhang C, Sun W, et al. Doxorubicin encapsulated in TPGS-modified 2D-nanodisks overcomes multidrug resistance. Chem A Eur J. 2020;26:2470–7. doi: 10.1002/chem.201905097. PubMed DOI

Tang J, Ji H, Ren J, et al. Solid lipid nanoparticles with TPGS and brij 78: a co-delivery vehicle of cur and piperine for reversing P-Glycoprotein-Mediated multidrug resistance in vitro. Oncol Lett. 2017;13:389–95. doi: 10.3892/ol.2016.5421. PubMed DOI PMC

Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces. 2016;146:114–26. doi: 10.1016/j.colsurfb.2016.05.051. PubMed DOI

Wang F, Li L, Liu B, Chen Z, Li C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed Pharmacother. 2017;86:595–604. doi: 10.1016/j.biopha.2016.12.041. PubMed DOI

Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother. 2019;116:109006. doi: 10.1016/j.biopha.2019.109006. PubMed DOI

Pedrosa P, Corvo ML, Ferreira-Silva M, et al. Targeting cancer resistance via multifunctional gold nanoparticles. Int J Mol Sci. 2019;20:5510. doi: 10.3390/ijms20215510. PubMed DOI PMC

Rathinaraj P, Muthusamy G, Prasad NR, et al. Folate-gold-bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur J Drug Metab Pharmacokinet. 2020;45:285–96. doi: 10.1007/s13318-019-00600-9. PubMed DOI

Kumon K, Kubota T, Kuroda S, et al. Abstract 3617: Trastuzumab-conjugated gold nanoparticles as novel HER2-targeted therapeutics against trastuzumab-resistant gastric cancer. Cancer Res. 2019;79:3617. doi: 10.1158/1538-7445.AM2019-3617. DOI

Deng R, Ji B, Yu H, et al. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-41866-y. PubMed DOI PMC

Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress. 2019;3:267–79. doi: 10.15698/cst2019.08.195. PubMed DOI PMC

Talamantez-Lyburn S, Brown P, Hondrogiannis N, et al. Gold nanoparticles loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5 deficient breast cancer cells. Int J Pharm. 2019;564:281–92. doi: 10.1016/j.ijpharm.2019.04.022. PubMed DOI PMC

Gopisetty MK, Kovács D, Igaz N, et al. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J Nanobiotechnol. 2019;17:9. doi: 10.1186/s12951-019-0448-4. PubMed DOI PMC

Ramezani T, Nabiuni M, Baharara J, Parivar K, Namvar F. Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran J Pharm Res. 2019;18:222–31. PubMed PMC

Kovács D, Szőke K, Igaz N, et al. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine Nanotechnol Biol Med. 2016;12:601–10. doi: 10.1016/j.nano.2015.10.015. PubMed DOI

Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials. 2016;75:71–81. doi: 10.1016/j.biomaterials.2015.09.030. PubMed DOI

Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9:790–810. doi: 10.1039/c7sc04004k. PubMed DOI PMC

Cho MH, Kim S, Lee JH, et al. Magnetic tandem apoptosis for overcoming multidrug-resistant cancer. Nano Lett. 2016;16:7455–60. doi: 10.1021/acs.nanolett.6b03122. PubMed DOI

Truffi M, Colombo M, Sorrentino L, et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep. 2018;8:1–11. doi: 10.1038/s41598-018-24968-x. PubMed DOI PMC

Miller-Kleinhenz J, Guo X, Qian W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62. doi: 10.1016/j.biomaterials.2017.10.035. PubMed DOI PMC

Liu E, Zhang M, Cui H, et al. Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B. 2018;8:956–68. doi: 10.1016/j.apsb.2018.07.012. PubMed DOI PMC

Weng H, Bejjanki NK, Zhang J, et al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2019;511:597–603. doi: 10.1016/j.bbrc.2019.02.117. PubMed DOI

Ma P, Xiao H, Yu C, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017;17:928–37. doi: 10.1021/acs.nanolett.6b04269. PubMed DOI

Guo S, Yao X, Jiang Q, et al. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front Pharmacol. 2020;11:1–11. doi: 10.3389/fphar.2020.00226. PubMed DOI PMC

Yen TY, Stephen ZR, Lin G, et al. Catalase-functionalized iron oxide nanoparticles reverse hypoxia-induced chemotherapeutic resistance. Adv Healthc Mater. 2019;8:1–8. doi: 10.1002/adhm.201900826. PubMed DOI PMC

Roleira FM, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem. 2015;183:235–58. doi: 10.1016/j.foodchem.2015.03.039. PubMed DOI

Wang J, Wang F, Li F, et al. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J Mater Chem B. 2016;4:2954–62. doi: 10.1039/c5tb02450a. PubMed DOI PMC

Keskin T, Yalcin S., Gunduz U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. Inorg Nano-Metal Chem. 2018;48:150–9. doi: 10.1080/24701556.2018.1453840. DOI

Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials. 2018;8:907. doi: 10.3390/nano8110907. PubMed DOI PMC

Chen S, Liang Q, Liu E, et al. Curcumin/sunitinib co-loaded BSA-stabilized SPIOs for synergistic combination therapy for breast cancer. J Mater Chem B. 2017;5:4060–72. doi: 10.1039/c7tb00040e. PubMed DOI

Rastegar R, Javar HA, Khoobi M, et al. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomedicine Biotechnol. 2018;46:207–16. doi: 10.1080/21691401.2018.1453829. PubMed DOI

Daglioglu C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surfaces B Biointerfaces. 2017;156:175–85. doi: 10.1016/j.colsurfb.2017.05.012. PubMed DOI

Wang D, Li X, Li X, et al. Magnetic and pH dual-responsive nanoparticles for synergistic drug-resistant breast cancer chemo/photodynamic therapy. Int J Nanomedicine. 2019;14:7665–79. doi: 10.2147/IJN.S214377. PubMed DOI PMC

Shenderova OA, Hu Z, Brenner D. Carbon family at the nanoscale BT - synthesis, properties and applications of ultrananocrystalline diamond. In: Gruen DM, Shenderova OA, Vul AY, editors. Netherlands: Springer; 2005. pp. 1–14.

Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon N Y. 1997;35:1654–8. doi: 10.1016/S0008-6223(97)82794-7. DOI

Li D, Lin L, Fan Y, et al. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact. 2020;6:729–39. doi: 10.1016/j.bioactmat.2020.09.015. PubMed DOI PMC

Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019;7:277–85. doi: 10.1039/c8tb02723d. PubMed DOI

Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horizons. 2019;6:434–69. doi: 10.1039/C8MH00966J. DOI

Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. 2016;21:585–97. doi: 10.1016/j.drudis.2015.11.011. PubMed DOI

Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401. PubMed DOI PMC

Bianco A, Pantarotto D, Kostarelos K, Prato M. Non-covalent complexes comprising carbon nanotubes. 2010. Available from: https://patents.google.com/patent/US7858648. [Last accessed on 18 Nov 2020]

Iannazzo D, Pistone A, Celesti C, et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials. 2019;9:282. doi: 10.3390/nano9020282. PubMed DOI PMC

Tian L, Tao L, Li H, et al. Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma. Colloids Surfaces A Physicochem Eng Asp. 2019;570:386–95. doi: 10.1016/j.colsurfa.2019.03.030. DOI

Mahajan S, Patharkar A, Kuche K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. 2018;548:540–58. doi: 10.1016/j.ijpharm.2018.07.027. PubMed DOI

Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater. 2018;30:1802368. doi: 10.1002/adma.201802368. PubMed DOI

Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm. 2017;516:301–12. doi: 10.1016/j.ijpharm.2016.11.027. PubMed DOI

Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9:1440. doi: 10.1038/s41467-018-03903-8. PubMed DOI PMC

Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012;7:459–64. doi: 10.1038/nnano.2012.90. PubMed DOI

Alexander A, Agrawal M, Yadav P, et al. Chapter 17 - Targeted delivery through carbon nanomaterials: applications in bioactive delivery systems Edited by Singh MR, Singh D, Kanwar JR, Chauhan NSBT-A and A in the D of NC for B and BA. Academic Press; 2020. pp. 509–24.

Pei X, Zhu Z, Gan Z, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10:1–15. doi: 10.1038/s41598-020-59624-w. PubMed DOI PMC

Qian R, Maiti D, Zhong J, et al. Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon N Y. 2019;149:55–62. doi: 10.1016/j.carbon.2019.04.046. DOI

Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–906. doi: 10.1021/acs.chemrev.5b00008. PubMed DOI

Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalized carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release. 2016;241:200–19. doi: 10.1016/j.jconrel.2016.09.033. PubMed DOI

Kim SW, Lee YK, Kim SH, et al. Covalent, non-covalent, encapsulated nanodrug regulate the fate of intra- and extracellular trafficking: impact on cancer and normal cells. Sci Rep. 2017;7:6454. doi: 10.1038/s41598-017-06796-7. PubMed DOI PMC

Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm. 2019;558:165–76. doi: 10.1016/j.ijpharm.2018.12.090. PubMed DOI

Curcio M, Farfalla A, Saletta F, et al. Functionalized carbon nanostructures versus drug resistance: promising scenarios in cancer treatment. Molecules. 2020;25:2102. doi: 10.3390/molecules25092102. PubMed DOI PMC

Hosnedlova B, Kepinska M, Fernandez C, et al. Carbon nanomaterials for targeted cancer therapy drugs: a critical review. Chem Rec. 2019;19:502–22. doi: 10.1002/tcr.201800038. PubMed DOI

Mehra NK, Jain AK, Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug Discov Today. 2018;23:1016–25. doi: 10.1016/j.drudis.2017.09.013. PubMed DOI

de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces. 2018;171:260–75. doi: 10.1016/j.colsurfb.2018.07.030. PubMed DOI

Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64–73. doi: 10.1016/j.jconrel.2018.07.034. PubMed DOI

Jiang B, Zhou B, Lin Z, Liang H, Shen X. Recent advances in carbon nanomaterials for cancer phototherapy. Chem A Eur J. 2019;25:3993–4004. doi: 10.1002/chem.201804383. PubMed DOI

Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell Physiol. 2019;234:298–319. doi: 10.1002/jcp.26899. PubMed DOI

Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release. 2015;210:230–45. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI

Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomed Nanotechnol Biol Med. 2017;13:2271–80. doi: 10.1016/j.nano.2017.07.002. PubMed DOI

Meng Y, Wang S, Li C, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials. 2016;100:134–42. doi: 10.1016/j.biomaterials.2016.05.033. PubMed DOI

Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir. 2016;32:1611–20. doi: 10.1021/acs.langmuir.5b03898. PubMed DOI

Zhao N, Fan W, Zhao X, et al. Polycation-carbon nanohybrids with superior rough hollow morphology for the NIR-II responsive multimodal therapy. ACS Appl Mater Interfaces. 2020;12:11341–52. doi: 10.1021/acsami.9b22373. PubMed DOI

Wang K, Yao H, Meng Y, et al. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater. 2015;16:196–205. doi: 10.1016/j.actbio.2015.01.002. PubMed DOI

Li F, Wang Y, Zhang Z, Shen Y, Guo S. A chemo/photo- co-therapeutic system for enhanced multidrug resistant cancer treatment using multifunctional mesoporous carbon nanoparticles coated with poly (curcumin-dithiodipropionic acid). Carbon N Y. 2017;122:524–37. doi: 10.1016/j.carbon.2017.07.008. DOI

Tu X, Wang L, Cao Y, et al. Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@SiO2 nanocomposites. Carbon N Y. 2016;97:35–44. doi: 10.1016/j.carbon.2015.05.043. DOI

Feng T, Ai X, An G, Yang P, Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 2016;10:4410–20. doi: 10.1021/acsnano.6b00043. PubMed DOI

Feng T, Chua HJ, Zhao Y. Carbon-dot-mediated co-administration of chemotherapeutic agents for reversing cisplatin resistance in cancer therapy. ChemNanoMat. 2018;4:801–6. doi: 10.1002/cnma.201700367. DOI

Ren W, Chen S, Liao Y, et al. Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surfaces B Biointerfaces. 2019;174:384–92. doi: 10.1016/j.colsurfb.2018.11.041. PubMed DOI

Chiu SH, Gedda G, Girma WM, et al. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 2016;46:151–64. doi: 10.1016/j.actbio.2016.09.027. PubMed DOI

Thakur M, Mewada A, Pandey S, et al. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C. 2016;67:468–77. doi: 10.1016/j.msec.2016.05.007. PubMed DOI

Sui X, Luo C, Wang C, et al. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomed Nanotechnol Biol Med. 2016;12:1997–2006. doi: 10.1016/j.nano.2016.03.010. PubMed DOI

Shenderova OA, Ciftan Hens SA. Nanodiamonds. Springer Handbook of Nanomaterials. Berlin Heidelberg: Springer; 2013. pp. 263–300.

Varin RA, Czujko T, Wronski ZS, editors. Carbons and Nanocarbons BT - Nanomaterials for Solid State Hydrogen Storage. US: Springer; 2009. pp. 291–320.

Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic nanodiamond supraparticles for anticancer drug loading and delivery. ACS Appl Mater Interfaces. 2019;11:18978–87. doi: 10.1021/acsami.9b04792. PubMed DOI

Zhu H, Wang Y, Hussain A, et al. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells. J Mater Chem B. 2017;5:3531–40. doi: 10.1039/c7tb00449d. PubMed DOI

Lam ATN, Yoon JH, Ly NH, Joo SW. Electrostatically self-assembled quinazoline-based anticancer drugs on negatively-charged nanodiamonds for overcoming the chemoresistances in lung cancer cells. Biochip J. 2018;12:163–71. doi: 10.1007/s13206-017-2209-5. DOI

Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9:11780–9. doi: 10.1021/acsami.6b15954. PubMed DOI

Li TF, Li K, Zhang Q, et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52. doi: 10.1016/j.biomaterials.2018.07.035. PubMed DOI

Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater. 2019;86:381–94. doi: 10.1016/j.actbio.2019.01.020. PubMed DOI

Chen Z, Wang C, Li TF, et al. Doxorubicin conjugated with nanodiamonds and in free form commit glioblastoma cells to heterodromous fates. Nanomedicine. 2019;14:335–51. doi: 10.2217/nnm-2018-0330. PubMed DOI

Chen Z, Yuan SJ, Li K, et al. Doxorubicin-polyglycerol-nanodiamond conjugates disrupt STAT3/IL-6-mediated reciprocal activation loop between glioblastoma cells and astrocytes. J Control Release. 2020;320:469–83. doi: 10.1016/j.jconrel.2020.01.044. PubMed DOI

Yuan SJ, Xu YH, Wang C, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnol. 2019;17:110. doi: 10.1186/s12951-019-0541-8. PubMed DOI PMC

Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B Biointerfaces. 2019;178:452–9. doi: 10.1016/j.colsurfb.2019.03.037. PubMed DOI

Tran TH, Nguyen HT, Pham TT, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces. 2015;7:28647–55. doi: 10.1021/acsami.5b10426. PubMed DOI

Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO. Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces. 2016;143:271–7. doi: 10.1016/j.colsurfb.2016.03.045. PubMed DOI

Huang C, Hu X, Hou Z, Ji J, Li Z, Luan Y. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. J. Colloid Interface Sci. 2019;545:172–83. doi: 10.1016/j.jcis.2019.03.019. PubMed DOI

Han C, Zhang C, Ma T, et al. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 2018;77:268–81. doi: 10.1016/j.actbio.2018.07.018. PubMed DOI

Guo L, Shi H, Wu H, et al. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon N Y. 2016;107:87–99. doi: 10.1016/j.carbon.2016.05.054. DOI

Luo Y, Cai X, Li H, Lin Y, Du D. Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung cancer cells. ACS Appl Mater Interfaces. 2016;8:4048–55. doi: 10.1021/acsami.5b11471. PubMed DOI

Chatterjee N, Yang J, Kim S, Joo SW, Choi J. Diameter size and aspect ratio as critical determinants of uptake, stress response, global metabolomics and epigenetic alterations in multi-wall carbon nanotubes. Carbon N Y. 2016;108:529–40. doi: 10.1016/j.carbon.2016.07.031. DOI

Donaldson K, Poland CA. Nanotoxicology: new insights into nanotubes. Nature Nanotechnol. 2009;4:708–10. doi: 10.1038/nnano.2009.327. PubMed DOI

Dong X, Sun Z, Wang X, et al. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 2017;24:143–51. doi: 10.1080/10717544.2016.1233592. PubMed DOI PMC

Raza K, Kumar D, Kiran C, et al. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol Pharm. 2016;13:2423–32. doi: 10.1021/acs.molpharmaceut.6b00183. PubMed DOI

Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon N Y. 2017;123:70–83. doi: 10.1016/j.carbon.2017.07.032. DOI

Guven A, Rusakova IA, Lewis MT, Wilson LJ. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials. 2012;33:1455–61. doi: 10.1016/j.biomaterials.2011.10.060. PubMed DOI PMC

Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater. 2017;58:466–78. doi: 10.1016/j.actbio.2017.04.035. PubMed DOI PMC

Ghosh M, Das PK. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surfaces B Biointerfaces. 2016;142:367–76. doi: 10.1016/j.colsurfb.2016.03.005. PubMed DOI

Razzazan A, Atyabi F, Kazemi B, Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C. 2016;62:614–25. doi: 10.1016/j.msec.2016.01.076. PubMed DOI

Li Y, Lu A, Long M, Cui L, Chen Z, Zhu L. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater. 2019;83:334–48. doi: 10.1016/j.actbio.2018.10.029. PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...