Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article, Review
PubMed
35582024
PubMed Central
PMC9019274
DOI
10.20517/cdr.2020.81
Knihovny.cz E-resources
- Keywords
- Drug-resistance, cancer, drug delivery, nanocarriers, nanotechnology,
- Publication type
- Journal Article MeSH
- Review MeSH
Cancer is one of the biggest healthcare concerns in our century, a disease whose treatment has become even more difficult following reports of drug-resistant tumors. When this happens, chemotherapy treatments fail or decrease in efficiency, leading to catastrophic consequences to the patient. This discovery, along with the fact that drug resistance limits the efficacy of current treatments, has led to a new wave of discovery for new methods of treatment. The use of nanomedicine has been widely studied in current years as a way to effectively fight drug resistance in cancer. Research in the area of cancer nanotechnology over the past decades has led to tremendous advancement in the synthesis of tailored nanoparticles with targeting ligands that can successfully attach to chemotherapy-resistant cancer by preferentially accumulating within the tumor region through means of active and passive targeting. Consequently, these approaches can reduce the off-target accumulation of their payload and lead to reduced cytotoxicity and better targeting. This review explores some categories of nanocarriers that have been used in the treatment of drug-resistant cancers, including polymeric, viral, lipid-based, metal-based, carbon-based, and magnetic nanocarriers, opening the door for an exciting field of discovery that holds tremendous promise in the treatment of these tumors.
Department of Chemical Engineering Northeastern University Boston MA 02115 USA
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague 16206 Czech Republic
See more in PubMed
Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14:21087–113. doi: 10.3390/ijms141021087. PubMed DOI PMC
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI
Greenivald P, Dunn BK. Landmarks in the history of cancer epidemiology. Cancer Res. 2009;69:2151–62. doi: 10.1158/0008-5472.CAN-09-0416. PubMed DOI
Van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–17. doi: 10.1038/s41565-019-0567-y. PubMed DOI PMC
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:1–18. doi: 10.1038/natrevmats.2017.24. PubMed DOI PMC
Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors: The main reason for therapeutic failure. Arzneimittelforschung. 2008;58:261–4. doi: 10.1055/s-0031-1296504. PubMed DOI
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6:1769–92. doi: 10.3390/cancers6031769. PubMed DOI PMC
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27. doi: 10.1146/annurev.med.53.082901.103929. PubMed DOI
Yang J, Yu Y, Liu W, et al. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol. 2017;9:71–7. doi: 10.2147/RRU.S118966. PubMed DOI PMC
Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 2016;43:723–37. doi: 10.1111/1440-1681.12581. PubMed DOI
Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev. 2017;11:19–25. doi: 10.4081/oncol.2017.326. PubMed DOI PMC
Suzawa K, Offin M, Schoenfeld AJ, et al. Acquired MET Exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR -mutated lung cancer. JCO Precis Oncol. 2019;3:1–8. doi: 10.1200/PO.19.00011. PubMed DOI PMC
Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Hermawan A, Wagner E, Roidl A. Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep. 2016;35:1732–40. doi: 10.3892/or.2015.4509. PubMed DOI
Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016;22:6876–89. doi: 10.3748/wjg.v22.i30.6876. PubMed DOI PMC
Kim SJ, Kim S, Kim DW, et al. Alterations in PD-L1 expression associated with acquisition of resistance to ALK inhibitors in ALK-rearranged lung cancer. Cancer Res Treat. 2019;51:1231–40. doi: 10.4143/crt.2018.486. PubMed DOI PMC
Toth RK, Tran JD, Muldong MT, et al. Hypoxia-induced PIM kinase and laminin-activated integrin $α$6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. Am J Clin Exp Urol. 2019;7:297–312. PubMed PMC
Wang S, Liu F, Zhu J, et al. DNA repair genes ERCC1 and BRCA1 expression in non-small cell lung cancer chemotherapy drug resistance. Med Sci Monit. 2016;22:1999–2005. doi: 10.12659/msm.896606. PubMed DOI PMC
Nogales V, Reinhold WC, Varma S, et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget. 2016;7:3084–97. doi: 10.18632/oncotarget.6413. PubMed DOI PMC
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. PubMed DOI
Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and Lesion-Specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6:147–53. doi: 10.1158/2159-8290.CD-15-1283. PubMed DOI PMC
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7:339–48. doi: 10.15171/apb.2017.041. PubMed DOI PMC
Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:965. doi: 10.3390/molecules21070965. PubMed DOI PMC
Elaskalani O, Razak NBA, Falasca M, Metharom P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointestinal Oncol. 2017;9:37–41. doi: 10.4251/wjgo.v9.i1.37. PubMed DOI PMC
Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget. 2017;8:56659–71. doi: 10.18632/oncotarget.17855. PubMed DOI PMC
Gao M, Deng J, Liu F, et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials. 2019;223:119486. doi: 10.1016/j.biomaterials.2019.119486. PubMed DOI
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6:44. doi: 10.1186/s40169-017-0175-0. PubMed DOI PMC
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017;14:228–41. doi: 10.20892/j.issn.2095-3941.2017.0052. PubMed DOI PMC
Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Del. 2015;12:129–42. doi: 10.1517/17425247.2014.950564. PubMed DOI
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep. 2017;38:611–24. doi: 10.3892/or.2017.5718. PubMed DOI PMC
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. doi: 10.2147/IJN.S146315. PubMed DOI PMC
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surfaces B Biointerfaces. 2019;173:581–90. doi: 10.1016/j.colsurfb.2018.10.022. PubMed DOI
Raveendran R. Chapter 12 - Polymeric micelles: Smart nanocarriers for anticancer drug delivery. In: Sharma CP, editor. Drug Delivery Nanosystems for Biomedical Applications. Elsevier; 2018. pp. 255–73.
Yang X, Lian K, Tan Y, et al. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr Polym. 2020;229:115435. doi: 10.1016/j.carbpol.2019.115435. PubMed DOI
Yao Q, Liu Y, Kou L, et al. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine. 2019;19:71–80. doi: 10.1016/j.nano.2019.03.012. PubMed DOI PMC
Zhen S, Yi X, Zhao Z, et al. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials. 2019;218:119330. doi: 10.1016/j.biomaterials.2019.119330. PubMed DOI
Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur Polym J. 2020;126:109546. doi: 10.1016/j.eurpolymj.2020.109546. DOI
Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol. 2017;8:261. doi: 10.3389/fphar.2017.00261. PubMed DOI PMC
Rajani C, Borisa P, Karanwad T, et al. 7 - Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier. In: Chauhan A, Kulhari H, editors. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. pp. 151–98.
Siriviriyanun A, Tsai YJ, Voon SH, et al. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C. 2018;89:307–15. doi: 10.1016/j.msec.2018.04.020. PubMed DOI
Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surfaces B Biointerfaces. 2017;155:257–65. doi: 10.1016/j.colsurfb.2017.04.029. PubMed DOI
Fan Y, Yuan S, Huo M, et al. Spatial controlled multistage nanocarriers through hybridization of dendrimers and gelatin nanoparticles for deep penetration and therapy into tumor tissue. Nanomedicine. 2017;13:1399–410. doi: 10.1016/j.nano.2017.01.008. PubMed DOI
Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm. 2019;557:329–41. doi: 10.1016/j.ijpharm.2018.12.069. PubMed DOI
Liang S, Sun C, Yang P, et al. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials. 2020;240:119850. doi: 10.1016/j.biomaterials.2020.119850. PubMed DOI
Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm. 2019;136:18–28. doi: 10.1016/j.ejpb.2019.01.006. PubMed DOI PMC
Gouveia M, Figueira J, Jardim MG, et al. Poly(alkylidenimine) dendrimers functionalized with the organometallicmoiety [Ru(ν 5-C5H5)(PPh3)2]+ as promising drugs against cisplatin-resistant cancer cells and humanmesenchymal stem cells. Molecules. 2018;23:1471. doi: 10.3390/molecules23061471. PubMed DOI PMC
Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol. 2014;18:104–11. doi: 10.1016/j.coph.2014.09.017. PubMed DOI
Dan N. Chapter 1 - vesicle-based drug carriers: liposomes, polymersomes, and niosomes. In: Grumezescu AM, editor. Design and Development of New Nanocarriers. William Andrew Publishing; 2018. pp. 1–55.
Khan MA, Ali S, Venkatraman SS, et al. Fabrication of poly (butadiene-block-ethylene oxide) based amphiphilic polymersomes: an approach for improved oral pharmacokinetics of Sorafenib. Int J Pharm. 2018;542:196–204. doi: 10.1016/j.ijpharm.2018.03.023. PubMed DOI
Köthe T, Martin S, Reich G, Fricker G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int J Pharm. 2020;579:119087. doi: 10.1016/j.ijpharm.2020.119087. PubMed DOI
Liu Q, Song L, Chen S, et al. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23–33. doi: 10.1016/j.biomaterials.2016.10.027. PubMed DOI
Zhu D, Wu S, Hu C, et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater. 2017;58:399–412. doi: 10.1016/j.actbio.2017.06.017. PubMed DOI
Zavvar T, Babaei M, Abnous K, et al. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm. 2020;578:119091. doi: 10.1016/j.ijpharm.2020.119091. PubMed DOI
Simón-Gracia L, Hunt H, Scodeller PD, et al. Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther. 2016;15:670. doi: 10.1158/1535-7163.MCT-15-0713-T. PubMed DOI PMC
Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci. 2016;105:1741–50. doi: 10.1016/j.xphs.2016.02.021. PubMed DOI
Alibolandi M, Abnous K, Hadizadeh F, et al. Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J Control Release. 2016;241:45–56. doi: 10.1016/j.jconrel.2016.09.012. PubMed DOI
Qin Y, Zhang Z, Huang C, et al. Folate-targeted redox-responsive polymersomes loaded with chemotherapeutic drugs and tariquidar to overcome drug resistance. J Biomed Nanotechnol. 2018;14:1705–18. doi: 10.1166/jbn.2018.2623. PubMed DOI
Franke CE, Czapar AE, Patel RB, Steinmetz NF. Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells. Mol Pharm. 2018;15:2922–31. doi: 10.1021/acs.molpharmaceut.7b00466. PubMed DOI
Perillo E, Porto S, Falanga A, et al. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget. 2016;7:4077–92. doi: 10.18632/oncotarget.6013. PubMed DOI PMC
Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe. 2014;15:260–5. doi: 10.1016/j.chom.2014.01.002. PubMed DOI PMC
Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell. 2016;30:108–19. doi: 10.1016/j.ccell.2016.05.012. PubMed DOI PMC
Mahoney DJ, Lefebvre C, Allan K, et al. Virus-Tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell. 2011;20:443–56. doi: 10.1016/j.ccr.2011.09.005. PubMed DOI
Muscolini M, Castiello L, Palermo E, et al. SIRT1 modulates the sensitivity of prostate cancer cells to vesicular stomatitis virus oncolysis. J Virol. 2019;93:e00626–19. doi: 10.1128/JVI.00626-19. PubMed DOI PMC
Dold C, Rodriguez Urbiola C, Wollmann G, et al. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics. 2016;3:16021. doi: 10.1038/mto.2016.21. PubMed DOI PMC
Martikainen M, Niittykoski M, von und zu Fraunberg M, et al. MicroRNA-attenuated clone of virulent semliki forest virus overcomes antiviral type i interferon in resistant mouse CT-2A glioma. J Virol. 2015;89:10637–47. doi: 10.1128/JVI.01868-15. PubMed DOI PMC
Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol. 2020;57:3545–55. doi: 10.1007/s13197-020-04360-2. PubMed DOI PMC
Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol. 2020;56:101509. doi: 10.1016/j.jddst.2020.101509. DOI
Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC
Jampílek J, Kráľová K. Chapter 8 - recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu AM, editor. Nanoarchitectonics in Biomedicine. William Andrew Publishing; 2019. pp. 219–94.
Chauhan SB, Gupta V. Recent advances in liposome. Res J Pharm Technol. 2020;13:2053–8. doi: 10.5958/0974-360X.2020.00369.8. DOI
Kiaie N, Gorabi AM, Penson PE, et al. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today. 2020;25:58–72. doi: 10.1016/j.drudis.2019.09.005. PubMed DOI
Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC
Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–63. doi: 10.1016/j.jconrel.2019.12.023. PubMed DOI
Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res. 2016;26:276–87. doi: 10.3109/08982104.2015.1117489. PubMed DOI
Chen M, Song F, Liu Y, et al. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. Nanoscale. 2019;11:3814–26. doi: 10.1039/c8nr06218h. PubMed DOI
Feng X, Li L, Jiang H, et al. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun. 2014;444:376–81. doi: 10.1016/j.bbrc.2014.01.053. PubMed DOI
Qiu L, Gao M, Xu Y. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine. 2015;10:6615. doi: 10.2147/IJN.S91463. PubMed DOI PMC
Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38:885–96. doi: 10.1038/aps.2017.10. PubMed DOI PMC
Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res. 2020 doi: 10.1007/s13346-020-00720-9. PubMed
Shen Q, Shen Y, Jin F, Du Y, Ying X. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res. 2020;30:12–20. doi: 10.1080/08982104.2019.1579838. PubMed DOI
Li X, Wu X, Yang H, et al. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother. 2019;117:109072. doi: 10.1016/j.biopha.2019.109072. PubMed DOI
Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol. 2020;55:101458. doi: 10.1016/j.jddst.2019.101458. DOI
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9:474. doi: 10.3390/nano9030474. PubMed DOI PMC
Abdelaziz HM, Freag MS, Elzoghby AO. Chapter 5 - solid lipid nanoparticle-based drug delivery for lung cancer. In: Kesharwani P, editor. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Academic Press; 2019. pp. 95–121.
Rajabi M, Mousa SA. Lipid nanoparticles and their application in nanomedicine. Curr Pharm Biotechnol. 2016;17:662–72. doi: 10.2174/1389201017666160415155457. PubMed DOI
Mihai MM, Holban AM, Călugăreanu A, Orzan OA. Chapter 11 - Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Elsevier; 2017. pp. 285–306.
Trapani A, Mandracchia D, Tripodo G, et al. Solid lipid nanoparticles made of self-emulsifying lipids for efficient encapsulation of hydrophilic substances. AIP Conference Proceedings 2145, 20004. AIP Publishing LLC; 2019.
Dumont C, Bourgeois S, Fessi H, Dugas PY, Jannin V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm. 2019;565:409–18. doi: 10.1016/j.ijpharm.2019.05.037. PubMed DOI
Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol. 2020;25:936–48. doi: 10.1080/10837450.2020.1759630. PubMed DOI
Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol. 2020;151:830–44. doi: 10.1016/j.ijbiomac.2020.02.132. PubMed DOI
Das Gupta S, Suh N. Tocopherols in cancer: an update. Mol Nutr Food Res. 2016;60:1354–63. doi: 10.1002/mnfr.201500847. PubMed DOI PMC
Affram KO, Smith T, Ofori E, et al. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol. 2020;55:101374. doi: 10.1016/j.jddst.2019.101374. PubMed DOI PMC
Oliveira MS, Aryasomayajula B, Pattni B, et al. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm. 2016;512:292–300. doi: 10.1016/j.ijpharm.2016.08.049. PubMed DOI
Jiang T, Zhang C, Sun W, et al. Doxorubicin encapsulated in TPGS-modified 2D-nanodisks overcomes multidrug resistance. Chem A Eur J. 2020;26:2470–7. doi: 10.1002/chem.201905097. PubMed DOI
Tang J, Ji H, Ren J, et al. Solid lipid nanoparticles with TPGS and brij 78: a co-delivery vehicle of cur and piperine for reversing P-Glycoprotein-Mediated multidrug resistance in vitro. Oncol Lett. 2017;13:389–95. doi: 10.3892/ol.2016.5421. PubMed DOI PMC
Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces. 2016;146:114–26. doi: 10.1016/j.colsurfb.2016.05.051. PubMed DOI
Wang F, Li L, Liu B, Chen Z, Li C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed Pharmacother. 2017;86:595–604. doi: 10.1016/j.biopha.2016.12.041. PubMed DOI
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother. 2019;116:109006. doi: 10.1016/j.biopha.2019.109006. PubMed DOI
Pedrosa P, Corvo ML, Ferreira-Silva M, et al. Targeting cancer resistance via multifunctional gold nanoparticles. Int J Mol Sci. 2019;20:5510. doi: 10.3390/ijms20215510. PubMed DOI PMC
Rathinaraj P, Muthusamy G, Prasad NR, et al. Folate-gold-bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur J Drug Metab Pharmacokinet. 2020;45:285–96. doi: 10.1007/s13318-019-00600-9. PubMed DOI
Kumon K, Kubota T, Kuroda S, et al. Abstract 3617: Trastuzumab-conjugated gold nanoparticles as novel HER2-targeted therapeutics against trastuzumab-resistant gastric cancer. Cancer Res. 2019;79:3617. doi: 10.1158/1538-7445.AM2019-3617. DOI
Deng R, Ji B, Yu H, et al. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-41866-y. PubMed DOI PMC
Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress. 2019;3:267–79. doi: 10.15698/cst2019.08.195. PubMed DOI PMC
Talamantez-Lyburn S, Brown P, Hondrogiannis N, et al. Gold nanoparticles loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5 deficient breast cancer cells. Int J Pharm. 2019;564:281–92. doi: 10.1016/j.ijpharm.2019.04.022. PubMed DOI PMC
Gopisetty MK, Kovács D, Igaz N, et al. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J Nanobiotechnol. 2019;17:9. doi: 10.1186/s12951-019-0448-4. PubMed DOI PMC
Ramezani T, Nabiuni M, Baharara J, Parivar K, Namvar F. Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran J Pharm Res. 2019;18:222–31. PubMed PMC
Kovács D, Szőke K, Igaz N, et al. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine Nanotechnol Biol Med. 2016;12:601–10. doi: 10.1016/j.nano.2015.10.015. PubMed DOI
Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials. 2016;75:71–81. doi: 10.1016/j.biomaterials.2015.09.030. PubMed DOI
Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9:790–810. doi: 10.1039/c7sc04004k. PubMed DOI PMC
Cho MH, Kim S, Lee JH, et al. Magnetic tandem apoptosis for overcoming multidrug-resistant cancer. Nano Lett. 2016;16:7455–60. doi: 10.1021/acs.nanolett.6b03122. PubMed DOI
Truffi M, Colombo M, Sorrentino L, et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep. 2018;8:1–11. doi: 10.1038/s41598-018-24968-x. PubMed DOI PMC
Miller-Kleinhenz J, Guo X, Qian W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62. doi: 10.1016/j.biomaterials.2017.10.035. PubMed DOI PMC
Liu E, Zhang M, Cui H, et al. Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B. 2018;8:956–68. doi: 10.1016/j.apsb.2018.07.012. PubMed DOI PMC
Weng H, Bejjanki NK, Zhang J, et al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2019;511:597–603. doi: 10.1016/j.bbrc.2019.02.117. PubMed DOI
Ma P, Xiao H, Yu C, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017;17:928–37. doi: 10.1021/acs.nanolett.6b04269. PubMed DOI
Guo S, Yao X, Jiang Q, et al. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front Pharmacol. 2020;11:1–11. doi: 10.3389/fphar.2020.00226. PubMed DOI PMC
Yen TY, Stephen ZR, Lin G, et al. Catalase-functionalized iron oxide nanoparticles reverse hypoxia-induced chemotherapeutic resistance. Adv Healthc Mater. 2019;8:1–8. doi: 10.1002/adhm.201900826. PubMed DOI PMC
Roleira FM, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem. 2015;183:235–58. doi: 10.1016/j.foodchem.2015.03.039. PubMed DOI
Wang J, Wang F, Li F, et al. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J Mater Chem B. 2016;4:2954–62. doi: 10.1039/c5tb02450a. PubMed DOI PMC
Keskin T, Yalcin S., Gunduz U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. Inorg Nano-Metal Chem. 2018;48:150–9. doi: 10.1080/24701556.2018.1453840. DOI
Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials. 2018;8:907. doi: 10.3390/nano8110907. PubMed DOI PMC
Chen S, Liang Q, Liu E, et al. Curcumin/sunitinib co-loaded BSA-stabilized SPIOs for synergistic combination therapy for breast cancer. J Mater Chem B. 2017;5:4060–72. doi: 10.1039/c7tb00040e. PubMed DOI
Rastegar R, Javar HA, Khoobi M, et al. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomedicine Biotechnol. 2018;46:207–16. doi: 10.1080/21691401.2018.1453829. PubMed DOI
Daglioglu C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surfaces B Biointerfaces. 2017;156:175–85. doi: 10.1016/j.colsurfb.2017.05.012. PubMed DOI
Wang D, Li X, Li X, et al. Magnetic and pH dual-responsive nanoparticles for synergistic drug-resistant breast cancer chemo/photodynamic therapy. Int J Nanomedicine. 2019;14:7665–79. doi: 10.2147/IJN.S214377. PubMed DOI PMC
Shenderova OA, Hu Z, Brenner D. Carbon family at the nanoscale BT - synthesis, properties and applications of ultrananocrystalline diamond. In: Gruen DM, Shenderova OA, Vul AY, editors. Netherlands: Springer; 2005. pp. 1–14.
Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon N Y. 1997;35:1654–8. doi: 10.1016/S0008-6223(97)82794-7. DOI
Li D, Lin L, Fan Y, et al. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact. 2020;6:729–39. doi: 10.1016/j.bioactmat.2020.09.015. PubMed DOI PMC
Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019;7:277–85. doi: 10.1039/c8tb02723d. PubMed DOI
Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horizons. 2019;6:434–69. doi: 10.1039/C8MH00966J. DOI
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. 2016;21:585–97. doi: 10.1016/j.drudis.2015.11.011. PubMed DOI
Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401. PubMed DOI PMC
Bianco A, Pantarotto D, Kostarelos K, Prato M. Non-covalent complexes comprising carbon nanotubes. 2010. Available from: https://patents.google.com/patent/US7858648. [Last accessed on 18 Nov 2020]
Iannazzo D, Pistone A, Celesti C, et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials. 2019;9:282. doi: 10.3390/nano9020282. PubMed DOI PMC
Tian L, Tao L, Li H, et al. Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma. Colloids Surfaces A Physicochem Eng Asp. 2019;570:386–95. doi: 10.1016/j.colsurfa.2019.03.030. DOI
Mahajan S, Patharkar A, Kuche K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. 2018;548:540–58. doi: 10.1016/j.ijpharm.2018.07.027. PubMed DOI
Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater. 2018;30:1802368. doi: 10.1002/adma.201802368. PubMed DOI
Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm. 2017;516:301–12. doi: 10.1016/j.ijpharm.2016.11.027. PubMed DOI
Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9:1440. doi: 10.1038/s41467-018-03903-8. PubMed DOI PMC
Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012;7:459–64. doi: 10.1038/nnano.2012.90. PubMed DOI
Alexander A, Agrawal M, Yadav P, et al. Chapter 17 - Targeted delivery through carbon nanomaterials: applications in bioactive delivery systems Edited by Singh MR, Singh D, Kanwar JR, Chauhan NSBT-A and A in the D of NC for B and BA. Academic Press; 2020. pp. 509–24.
Pei X, Zhu Z, Gan Z, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10:1–15. doi: 10.1038/s41598-020-59624-w. PubMed DOI PMC
Qian R, Maiti D, Zhong J, et al. Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon N Y. 2019;149:55–62. doi: 10.1016/j.carbon.2019.04.046. DOI
Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–906. doi: 10.1021/acs.chemrev.5b00008. PubMed DOI
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalized carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release. 2016;241:200–19. doi: 10.1016/j.jconrel.2016.09.033. PubMed DOI
Kim SW, Lee YK, Kim SH, et al. Covalent, non-covalent, encapsulated nanodrug regulate the fate of intra- and extracellular trafficking: impact on cancer and normal cells. Sci Rep. 2017;7:6454. doi: 10.1038/s41598-017-06796-7. PubMed DOI PMC
Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm. 2019;558:165–76. doi: 10.1016/j.ijpharm.2018.12.090. PubMed DOI
Curcio M, Farfalla A, Saletta F, et al. Functionalized carbon nanostructures versus drug resistance: promising scenarios in cancer treatment. Molecules. 2020;25:2102. doi: 10.3390/molecules25092102. PubMed DOI PMC
Hosnedlova B, Kepinska M, Fernandez C, et al. Carbon nanomaterials for targeted cancer therapy drugs: a critical review. Chem Rec. 2019;19:502–22. doi: 10.1002/tcr.201800038. PubMed DOI
Mehra NK, Jain AK, Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug Discov Today. 2018;23:1016–25. doi: 10.1016/j.drudis.2017.09.013. PubMed DOI
de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces. 2018;171:260–75. doi: 10.1016/j.colsurfb.2018.07.030. PubMed DOI
Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64–73. doi: 10.1016/j.jconrel.2018.07.034. PubMed DOI
Jiang B, Zhou B, Lin Z, Liang H, Shen X. Recent advances in carbon nanomaterials for cancer phototherapy. Chem A Eur J. 2019;25:3993–4004. doi: 10.1002/chem.201804383. PubMed DOI
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell Physiol. 2019;234:298–319. doi: 10.1002/jcp.26899. PubMed DOI
Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release. 2015;210:230–45. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI
Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomed Nanotechnol Biol Med. 2017;13:2271–80. doi: 10.1016/j.nano.2017.07.002. PubMed DOI
Meng Y, Wang S, Li C, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials. 2016;100:134–42. doi: 10.1016/j.biomaterials.2016.05.033. PubMed DOI
Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir. 2016;32:1611–20. doi: 10.1021/acs.langmuir.5b03898. PubMed DOI
Zhao N, Fan W, Zhao X, et al. Polycation-carbon nanohybrids with superior rough hollow morphology for the NIR-II responsive multimodal therapy. ACS Appl Mater Interfaces. 2020;12:11341–52. doi: 10.1021/acsami.9b22373. PubMed DOI
Wang K, Yao H, Meng Y, et al. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater. 2015;16:196–205. doi: 10.1016/j.actbio.2015.01.002. PubMed DOI
Li F, Wang Y, Zhang Z, Shen Y, Guo S. A chemo/photo- co-therapeutic system for enhanced multidrug resistant cancer treatment using multifunctional mesoporous carbon nanoparticles coated with poly (curcumin-dithiodipropionic acid). Carbon N Y. 2017;122:524–37. doi: 10.1016/j.carbon.2017.07.008. DOI
Tu X, Wang L, Cao Y, et al. Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@SiO2 nanocomposites. Carbon N Y. 2016;97:35–44. doi: 10.1016/j.carbon.2015.05.043. DOI
Feng T, Ai X, An G, Yang P, Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 2016;10:4410–20. doi: 10.1021/acsnano.6b00043. PubMed DOI
Feng T, Chua HJ, Zhao Y. Carbon-dot-mediated co-administration of chemotherapeutic agents for reversing cisplatin resistance in cancer therapy. ChemNanoMat. 2018;4:801–6. doi: 10.1002/cnma.201700367. DOI
Ren W, Chen S, Liao Y, et al. Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surfaces B Biointerfaces. 2019;174:384–92. doi: 10.1016/j.colsurfb.2018.11.041. PubMed DOI
Chiu SH, Gedda G, Girma WM, et al. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 2016;46:151–64. doi: 10.1016/j.actbio.2016.09.027. PubMed DOI
Thakur M, Mewada A, Pandey S, et al. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C. 2016;67:468–77. doi: 10.1016/j.msec.2016.05.007. PubMed DOI
Sui X, Luo C, Wang C, et al. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomed Nanotechnol Biol Med. 2016;12:1997–2006. doi: 10.1016/j.nano.2016.03.010. PubMed DOI
Shenderova OA, Ciftan Hens SA. Nanodiamonds. Springer Handbook of Nanomaterials. Berlin Heidelberg: Springer; 2013. pp. 263–300.
Varin RA, Czujko T, Wronski ZS, editors. Carbons and Nanocarbons BT - Nanomaterials for Solid State Hydrogen Storage. US: Springer; 2009. pp. 291–320.
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic nanodiamond supraparticles for anticancer drug loading and delivery. ACS Appl Mater Interfaces. 2019;11:18978–87. doi: 10.1021/acsami.9b04792. PubMed DOI
Zhu H, Wang Y, Hussain A, et al. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells. J Mater Chem B. 2017;5:3531–40. doi: 10.1039/c7tb00449d. PubMed DOI
Lam ATN, Yoon JH, Ly NH, Joo SW. Electrostatically self-assembled quinazoline-based anticancer drugs on negatively-charged nanodiamonds for overcoming the chemoresistances in lung cancer cells. Biochip J. 2018;12:163–71. doi: 10.1007/s13206-017-2209-5. DOI
Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9:11780–9. doi: 10.1021/acsami.6b15954. PubMed DOI
Li TF, Li K, Zhang Q, et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52. doi: 10.1016/j.biomaterials.2018.07.035. PubMed DOI
Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater. 2019;86:381–94. doi: 10.1016/j.actbio.2019.01.020. PubMed DOI
Chen Z, Wang C, Li TF, et al. Doxorubicin conjugated with nanodiamonds and in free form commit glioblastoma cells to heterodromous fates. Nanomedicine. 2019;14:335–51. doi: 10.2217/nnm-2018-0330. PubMed DOI
Chen Z, Yuan SJ, Li K, et al. Doxorubicin-polyglycerol-nanodiamond conjugates disrupt STAT3/IL-6-mediated reciprocal activation loop between glioblastoma cells and astrocytes. J Control Release. 2020;320:469–83. doi: 10.1016/j.jconrel.2020.01.044. PubMed DOI
Yuan SJ, Xu YH, Wang C, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnol. 2019;17:110. doi: 10.1186/s12951-019-0541-8. PubMed DOI PMC
Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B Biointerfaces. 2019;178:452–9. doi: 10.1016/j.colsurfb.2019.03.037. PubMed DOI
Tran TH, Nguyen HT, Pham TT, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces. 2015;7:28647–55. doi: 10.1021/acsami.5b10426. PubMed DOI
Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO. Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces. 2016;143:271–7. doi: 10.1016/j.colsurfb.2016.03.045. PubMed DOI
Huang C, Hu X, Hou Z, Ji J, Li Z, Luan Y. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. J. Colloid Interface Sci. 2019;545:172–83. doi: 10.1016/j.jcis.2019.03.019. PubMed DOI
Han C, Zhang C, Ma T, et al. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 2018;77:268–81. doi: 10.1016/j.actbio.2018.07.018. PubMed DOI
Guo L, Shi H, Wu H, et al. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon N Y. 2016;107:87–99. doi: 10.1016/j.carbon.2016.05.054. DOI
Luo Y, Cai X, Li H, Lin Y, Du D. Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung cancer cells. ACS Appl Mater Interfaces. 2016;8:4048–55. doi: 10.1021/acsami.5b11471. PubMed DOI
Chatterjee N, Yang J, Kim S, Joo SW, Choi J. Diameter size and aspect ratio as critical determinants of uptake, stress response, global metabolomics and epigenetic alterations in multi-wall carbon nanotubes. Carbon N Y. 2016;108:529–40. doi: 10.1016/j.carbon.2016.07.031. DOI
Donaldson K, Poland CA. Nanotoxicology: new insights into nanotubes. Nature Nanotechnol. 2009;4:708–10. doi: 10.1038/nnano.2009.327. PubMed DOI
Dong X, Sun Z, Wang X, et al. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 2017;24:143–51. doi: 10.1080/10717544.2016.1233592. PubMed DOI PMC
Raza K, Kumar D, Kiran C, et al. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol Pharm. 2016;13:2423–32. doi: 10.1021/acs.molpharmaceut.6b00183. PubMed DOI
Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon N Y. 2017;123:70–83. doi: 10.1016/j.carbon.2017.07.032. DOI
Guven A, Rusakova IA, Lewis MT, Wilson LJ. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials. 2012;33:1455–61. doi: 10.1016/j.biomaterials.2011.10.060. PubMed DOI PMC
Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater. 2017;58:466–78. doi: 10.1016/j.actbio.2017.04.035. PubMed DOI PMC
Ghosh M, Das PK. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surfaces B Biointerfaces. 2016;142:367–76. doi: 10.1016/j.colsurfb.2016.03.005. PubMed DOI
Razzazan A, Atyabi F, Kazemi B, Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C. 2016;62:614–25. doi: 10.1016/j.msec.2016.01.076. PubMed DOI
Li Y, Lu A, Long M, Cui L, Chen Z, Zhu L. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater. 2019;83:334–48. doi: 10.1016/j.actbio.2018.10.029. PubMed DOI