• This record comes from PubMed

In vitro antiproliferative and cytotoxic activities of novel triphenyltin isoselenocyanate in human breast carcinoma cell lines MCF 7 and MDA-MB-231

. 2022 May 23 ; 39 (5) : 99. [epub] 20220523

Language English Country United States Media electronic

Document type Journal Article

Grant support
APVV-15-0372 Agentúra na Podporu Výskumu a Vývoja
APVV-20-0314 Agentúra na Podporu Výskumu a Vývoja
VEGA 2/0126/19 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
VEGA 1/0460/21 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
VEGA 1/0136/18 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
VEGA 1/0489/20 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
VEGA 2/0116/21 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
MUNI/A/1682/2020 Masarykova Univerzita
TRANSMED 2, ITMS: 26240120030 ERDF
TRANSMED, ITMS: 26240120008 ERDF
ITMS: 26240220071 ERDF

Links

PubMed 35599282
DOI 10.1007/s12032-022-01692-1
PII: 10.1007/s12032-022-01692-1
Knihovny.cz E-resources

Intensive investigation for novel antiproliferative and cytotoxic effective chemical compounds is currently concentrated on structurally modified agents of natural or synthetic source. The selenium derivative of triorganotin compound, triphenyltin isoselenocyanate (TPT-NCSe) caused higher cytotoxicity in hormone sensitive MCF 7 (IC 50-250 nM) in comparison with triple-negative MDA-MB-231 breast carcinoma cell line (IC 50-450 nM) as determined by MTT assay. Measurement of DNA damage showed presence of crosslinks in both cell lines treated by increasing TPT-NCSe concentrations. This compound decreased mitochondrial membrane potential shown by JC-1 staining in a concentration-dependent manner in both cell lines. Activation of caspases-3/7 was observed in MDA-MB-231 cells and was significant only by concentrations causing significant level of crosslinks. On the other hand, migration assay revealed inhibitory effect of viability keeping 100 nM concentration of TPT-NCSe on migration of MDA-MB-231 cells. Our data has shown that this selenium containing triorganotin molecule exerts DNA damage-linked antineoplastic activity in breast carcinoma cell lines studied.

See more in PubMed

Annageldiyev C, Tan SF, Thakur S, Dhanyamraju PK, Ramisetti SR, Bhadauria P, Schick J, Zeng Z, Sharma V, Dunton W, Dovat S, Desai D, Zheng H, Feith DJ, Loughran TP Jr, Amin S, Sharma AK, Claxton D, Sharma A. The PI3K/AKT pathway inhibitor ISC-4 induces apoptosis and inhibits growth of leukemia in preclinical models of acute myeloid leukemia. Front Oncol. 2020;10:393. https://doi.org/10.3389/fonc.2020.00393 . PubMed DOI PMC

Unni E, Koul D, Yung WK, Sinha R. Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro. Breast Cancer Res. 2005;7:R699–707. DOI

El-Bayoumy K, Sinha R. Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat Res. 2004;551:181–97. DOI

Sinha R, El-Bayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets. 2004;4:13–28. DOI

Frieben EE, Amin S, Sharma AK. Development of isoselenocyanate compounds’ syntheses and biological applications. J Med Chem. 2019;62:5261–75. https://doi.org/10.1021/acs.jmedchem.8b01698 . PubMed DOI

Combs GF Jr, Gray WP. Chemopreventive agents: selenium. Pharmacol Ther. 1998;79:179–92. DOI

Fleming J, Chose A, Harrison PR. Molecular mechanisms of cancer prevention by selenium compounds. Nutr Cancer. 2001;40:42–9. DOI

Whanger PD. Selenium and its relationship to cancer: an update. Br J Nutr. 2004;91:11–28. DOI

Zhu Z, Jiang W, Ganther HE, Ip C, Thompson HJ. In vitro effects of Se-allylselenocysteine and Se-propylselenocysteine on cell growth, DNA integrity, and apoptosis. Biochem Pharmacol. 2000;60:1467–73. DOI

Ip C, Dong Y. Methylselenocysteine modulates proliferation and apoptosis biomarkers in premalignant lesions of the rat mammary gland. Anticancer Res. 2001;21:863–7. PubMed

Lu J, Kaeck M, Jiang C, Wilson AC, Thompson HJ. Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochem Pharmacol. 1994;47:1531–5. DOI

Lagunes I, Begines P, Silva A, Galan AR, Puerta A, Fernandes MX, Maya I, Fernandez-Bolanos JG, Lopez O, Padron JM. Selenocoumarins as new multitarget antiproliferative agents: synthesis, biological evaluation and in silico calculations. Eur J Med Chem. 2019;179:493–501. https://doi.org/10.1016/j.ejmech.2019.06.073 . PubMed DOI

Hunakova L, Horvathova E, Gronesova P, Bobal P, Otevrel J, Brtko J. Triorganotin isothiocyanates affect migration and immune check-point receptors in human triple-negative breast carcinoma MDA-MB-231 cells. Anticancer Res. 2019;39:4845–51. https://doi.org/10.21873/anticanres.13670 . PubMed DOI

Hunakova L, Horvathova E, Majerova K, Bobal P, Otevrel J, Brtko J. Genotoxic effects of tributyltin and triphenyltin isothiocyanates, cognate RXR ligands: comparison in human breast carcinoma MCF 7 and MDA-MB-231 cells. Int J Mol Sci. 2019;20:1198. https://doi.org/10.3390/ijms20051198 . DOI PMC

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. DOI

Gabelova A, Slamenova D, Ruzekova L, Farkasova T, Horvathova E. Measurement of DNA strand breakage and DNA repair induced with hydrogen peroxide using single cell gel electrophoresis, alkaline DNA unwinding and alkaline elution of DNA. Neoplasma. 1997;44:380–8. PubMed

Pfuhler S, Wolf HU. Detection of DNA-crosslinking agents with the alkaline comet assay. Environ Mol Mutagen. 1996;27:196–201. DOI

Hunakova L, Gronesova P, Horvathova E, Chalupa I, Cholujova D, Duraj J, Sedlak J. Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol Lett. 2014;230:479–86. DOI

Haugland RP, Spence MTZ, Johnson ID. Handbook of fluorescent probes & research chemicals. Eugene: Molecular Probes Inc.; 1996.

Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie. 2020;179:157–68. https://doi.org/10.1016/j.biochi.2020.09.027 . PubMed DOI

El-Bayoumy K, Upadhyaya P, Chae YH, Sohn OS, Rao CV, Fiala E, Reddy BS. Chemoprevention of cancer by organoselenium compounds. J Cell Biochem Suppl. 1995;22:92–100. DOI

Sharma AK, Sharma A, Desai D, Madhunapantula SV, Huh SJ, Robertson GP, Amin S. Synthesis and anticancer activity comparison of phenylalkyl isoselenocyanates with corresponding naturally occurring and synthetic isothiocyanates. J Med Chem. 2008;51:7820–6. https://doi.org/10.1021/jm800993r . PubMed DOI PMC

Chakraborty P, Roy SS, Basu A, Bhattacharya S. Sensitization of cancer cells to cyclophosphamide therapy by an organoselenium compound through ROS-mediated apoptosis. Biomed Pharmacother. 2016;84:1992–9. https://doi.org/10.1016/j.biopha.2016.11.006 . PubMed DOI

Wang J, Guo W, Zhou H, Luo N, Nie C, Zhao X, Yuan Z, Liu X, Wei Y. Mitochondrial p53 phosphorylation induces Bak-mediated and caspase-independent cell death. Oncotarget. 2015;6:17192–205. DOI

Prokhorova EA, Kopeina GS, Lavrik IN, Zhivotovsky B. Apoptosis regulation by subcellular relocation of caspases. Sci Rep. 2018;8:12199. https://doi.org/10.1038/s41598-018-30652-x . PubMed DOI PMC

Yang S, Huang J, Liu P, Li J, Zhao S. Apoptosis-inducing factor (AIF) nuclear translocation mediated caspase-independent mechanism involves in X-ray-induced MCF-7 cell death. Int J Radiat Biol. 2017;93:270–8. https://doi.org/10.1080/09553002.2016.1254833 . PubMed DOI

Weitsman GE, Ravid A, Liberman UA, Koren R. Vitamin D enhances caspase-dependent and -independent TNFα-induced breast cancer cell death: the role of reactive oxygen species and mitochondria. Int J Cancer. 2003;106:178–86. https://doi.org/10.1002/ijc.11202 . PubMed DOI

Chung F-L, Jiao D, Conaway CC, Smith TJ, Yang CS, Yu MC. Chemopreventive potential of thiol conjugates of isothiocyanates for lung cancer and a urinary biomarker of dietary isothiocyanates. J Cell Biochem Suppl. 1997;27:76–85. https://doi.org/10.1002/(SICI)1097-4644(1997)27+%3c76::AID-JCB13%3e3.0.CO;2-J . PubMed DOI

Kolodziejski D, Koss-Mikolajczyk I, Abdin AY, Claus J, Bartoszek A. Chemical aspects of biological activity of isothiocyanates and indoles, the products of glucosinolate decomposition. Curr Pharm Des. 2019;25:1717–28. https://doi.org/10.2174/1381612825666190701151644 . PubMed DOI

Crampsie MA, Pandey MK, Desai D, Spallholz J, Amin S, Sharma AK. Phenylalkyl isoselenocyanates vs phenylalkyl isothiocyanates: thiol reactivity and its implications. Chem Biol Interact. 2012;200:28–37. https://doi.org/10.1016/j.cbi.2012.08.022 . PubMed DOI PMC

Banerjee K, Padmavathi G, Bhattacherjee D, Saha S, Kunnumakkara AB, Bhabak KP. Potent anti-proliferative activities of organochalcogenocyanates towards breast cancer. Org Biomol Chem. 2018;16:8769. https://doi.org/10.1039/c8ob01891j . PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...