Correlation between retinal oxygen saturation and the haemodynamic parameters of the ophthalmic artery in healthy subjects

. 2022 Nov ; 100 (7) : e1489-e1495. [epub] 20220522

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35599335

Grantová podpora
NV19-06-00216 Agentura Pro Zdravotnický Výzkum České Republiky
FNOl, 00098892 Fakultní Nemocnice Olomouc

PURPOSE: The aim of the study was to obtain the values of oxygen saturation in retinal vessels and ophthalmic blood flow parameters in a healthy Caucasian population and assess whether the oximetry parameters are affected by the flow rate or the vascular resistance. METHODS: The spectrophotometric retinal oximetry and colour Doppler imaging (CDI) of retinal vessels were successfully performed with 52 healthy subjects (average age 29.7 ± 5.6 years). The retinal oximeter simultaneously measures the wavelength difference of haemoglobin oxygen saturation in retinal arterioles and venules. The arteriolar and venular saturation in both eyes was measured. The peak systolic (PSV) end diastolic (EDV) velocities, resistive (RI) and pulsatility (PI) indices were obtained for both eyes using CDI in the ophthalmic artery. A paired t-test and two sample t-tests were used for statistical analyses. The correlation was assessed using the Pearson coefficient correlation. RESULTS: The mean oxygen saturation level was 96.9 ± 3.0% for the retinal arterioles and 65.0 ± 5.1% for the retinal venules. The A-V difference was 31.8 ± 4.6%. The mean of the measured haemodynamic parameters was PSV 46.6 ± 9.4 cm/s, EDV 12.0 ± 3.5 cm/s, PI 1.68 ± 0.38 and RI 0.74 ± 0.05. No significant difference in oxygen saturation and haemodynamic parameters was found between the left and the right eyes or the dominant and non-dominant eye. The oximetry and ultrasound values were sex independent. The Pearson correlation coefficient demonstrated a significant yet weak negative correlation between A-V difference and RI (r = -0.321, p = 0.020). CONCLUSIONS: A negative correlation between A-V difference and resistance index was observed, suggesting that reduced oxygen consumption may reflect the increased vascular tone of the ophthalmic vessels, which is likely determined by autoregulatory mechanisms.

Zobrazit více v PubMed

Abay TY & Kyriacou PA (2016): Comparison of NIRS, laser doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges. Physiol Meas 37: 503–514. PubMed

Barbosa‐Breda J, Van Keer K, Abegão‐Pinto L et al. (2019): Improved discrimination between normal‐tension and primary open‐angle glaucoma with advanced vascular examinations ‐ the Leuven eye study. Acta Ophthalmol 97: e50–e56. PubMed

Bittner M, Faes L, Boehni SC, Bachmann LM, Schlingemann RO & Schmid MK (2016): Colour doppler analysis of ophthalmic vessels in the diagnosis of carotic artery and retinal vein occlusion, diabetic retinopathy and glaucoma: systematic review of test accuracy studies. BMC Ophthalmol 16: 214. PubMed PMC

Bourne RRA (2011): Ethnicity and ocular imaging. Eye Lond Engl 25: 297–300. PubMed PMC

Chen H, Lin H, Chen W, Zhang B, Xiang W, Gao Q, Chen W & Liu Y (2017): Preoperative and postoperative measurements of retinal vessel oxygen saturation in patients with different grades of cataracts. Acta Ophthalmol 95: e436–e442. PubMed

Della Volpe Waizel M, Türksever C & Todorova MG (2020): Influence of cataract light scatters on retinal vessel oxygen saturation. Acta Ophthalmol 98: e56–e62. PubMed

Dimitrova G, Tamaki Y & Kato S (2002): Retrobulbar circulation in patients with age‐related maculopathy. Eye Lond Engl 16: 580–586. PubMed

Eliasdottir TS (2018): Retinal oximetry and systemic arterial oxygen levels. Acta Ophthalmol 96 Suppl A113: 1–44. PubMed

Evans DW, Harris A, Danis RP, Arend O & Martin BJ (1997): Altered retrobulbar vascular reactivity in early diabetic retinopathy. Br J Ophthalmol 81: 279–282. PubMed PMC

Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J & Weiter JJ (1989): Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30: 58–65. PubMed

Geirsdottir A, Palsson O, Hardarson SH, Olafsdottir OB, Kristjansdottir JV & Stefánsson E (2012): Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci 53: 5433–5442. PubMed

Gosling RG & King DH (1974): The role of measurement in peripheral vascular surgery: arterial assessment by doppler‐shift ultrasound. Proc R Soc Med 67: 447–449. PubMed PMC

Hallock GG & Rice DC (2003): A comparison of pulse oximetry and laser doppler flowmetry in monitoring sequential vascular occlusion in a rabbit ear model. Can J Plast Surg 11: 11–14. PubMed PMC

Hardarson SH (2013): Retinal oximetry. Acta Ophthalmol (Copenh) 91: 1–47. PubMed

Harris A, Harris M, Biller J, Garzozi H, Zarfty D, Ciulla TA & Martin B (2000): Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol 118: 1076–1080. PubMed

Jani PD, Mwanza J‐C, Billow KB, Waters AM, Moyer S & Garg S (2014): Normative values and predictors of retinal oxygen saturation. Retina 34: 394–401. PubMed

Jeppesen P, Gregersen PA & Bek T (2004): The age‐dependent decrease in the myogenic response of retinal arterioles as studied with the retinal vessel analyzer. Graefes Arch Clin Exp Ophthalmol 242: 914–919. PubMed

Kouvidis GK, Benos A, Kyriakopoulou G, Anastopoulos G & Triantafyllou D (2000): Colour doppler ultrasonography of the ophthalmic artery: flow parameters in normal subjects. The significance of the resistance index. Int Angiol J Int Union Angiol 19: 319–325. PubMed

Li J, Yang Y, Yang D, Liu X, Sun Y, Wei S & Wang N (2016): Normative values of retinal oxygen saturation in rhesus monkeys: the Beijing intracranial and intraocular pressure (iCOP) study. PLoS one 11: e0150072. PubMed PMC

Liu X, Wang S, Liu Y, Liu LJ, Lv YY, Tang P, Jonas JB & Xu L (2017): Retinal oxygen saturation in Chinese adolescents. Acta Ophthalmol 95: e54–e61. PubMed

MacKinnon JR, McKillop G, O'Brien C, Swa K, Butt Z & Nelson P (2000): Colour doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmol Scand 78: 386–389. PubMed

Mlčák P, Chlup R, Kudlová P et al. (2022): Retinal oxygen saturation is associated with HbA1c but not with short‐term diabetes control, internal environment, smoking and mild retinopathy ‐ ROXINEGLYD study. Acta Ophthalmol 100: e142–e149. PubMed

Modrzejewska M (2019): Guidelines for ultrasound examination in ophthalmology. Part III: color doppler ultrasonography. J Ultrason 19: 128–136. PubMed PMC

Modrzejewska M, Siesky B, Amireskandari A, Holland S, Grzesiak W, Zaborski D, Huck A & Harris A (2015): Parameters characterizing age‐dependent retrobulbar circulation in healthy subjects measured by color doppler ultrasonography. Curr Eye Res 40: 729–736. PubMed

Mohan A, Dabir S, Yadav NK, Kummelil M, Kumar RS & Shetty R (2015): Normative database of retinal oximetry in Asian Indian eyes. PLoS One 10: e0126179. PubMed PMC

Nakano Y, Shimazaki T, Kobayashi N et al. (2016): Retinal oximetry in a healthy Japanese population. PloS one 11: e0159650. PubMed PMC

Olafsdottir OB, Eliasdottir TS, Kristjansdottir JV, Hardarson SH & Stefánsson E (2015): Retinal vessel oxygen saturation during 100% oxygen breathing in healthy individuals. PLoS One 10: e0128780. PubMed PMC

Olafsdottir OB, Saevarsdottir HS, Hardarson SH et al. (2018): Retinal oxygen metabolism in patients with mild cognitive impairment. Alzheimers Dement Amst Neth 10: 340–345. PubMed PMC

Palsson O, Geirsdottir A, Hardarson SH, Olafsdottir OB, Kristjansdottir JV & Stefánsson E (2012): Retinal oximetry images must be standardized: a methodological analysis. Invest Ophthalmol Vis Sci 53: 1729–1733. PubMed

Planiol T, Pourcelot L & Itti R (1973): The carotid and cerebral circulations. Advances in its study by external physical methods. Principles, normal recordings, adopted parameters. Nouv Presse Med 2: 2451–2456. PubMed

Pournaras CJ, Rungger‐Brändle E, Riva CE, Hardarson SH & Stefansson E (2008): Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27: 284–330. PubMed

Querfurth HW, Lagrèze W‐DA, Hedges TR & Heggerick PA (2002): Flow velocity and pulsatility of the ocular circulation in chronic intracranial hypertension. Acta Neurol Scand 105: 431–440. PubMed

Rassam SMB, Patel V, Chen HC & Kohner EM (1996): Regional retinal blood flow and vascular autoregulation. Eye 10: 331–337. PubMed

Repo LP, Suhonen MT, Teräsvirta ME & Koivisto KJ (1995): Color doppler imaging of the ophthalmic artery blood flow spectra of patients who have had a transient ischemic attack. Correlations with generalized iris transluminance and pseudoexfoliation syndrome. Ophthalmology 102: 1199–1205. PubMed

Rochtchina E, Wang JJ, Taylor B, Wong TY & Mitchell P (2008): Ethnic variability in retinal vessel caliber: a potential source of measurement error from ocular pigmentation?‐‐the Sydney childhood eye study. Invest Ophthalmol Vis Sci 49: 1362–1366. PubMed

Rojanapongpun P, Drance SM & Morrison BJ (1993): Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 77: 25–29. PubMed PMC

Šín M, Chrapek O, Karhanová M, Šínová I, Špačková K, Langová K & Řehák J (2016): The effect of pars plana vitrectomy and nuclear cataract on oxygen saturation in retinal vessels, diabetic and non‐diabetic patients compared. Acta Ophthalmol 94: 41–47. PubMed

Stalmans I, Harris A, Fieuws S, Zeyen T, Vanbellinghen V, McCranor L & Siesky B (2009): Color doppler imaging and ocular pulse amplitude in glaucomatous and healthy eyes. Eur J Ophthalmol 19: 580–587. PubMed

Stalmans I, Vandewalle E, Anderson DR et al. (2011): Use of colour doppler imaging in ocular blood flow research. Acta Ophthalmol 89: e609–e630. PubMed

Stefánsson E, Olafsdottir OB, Einarsdottir AB et al. (2017): Retinal oximetry discovers novel biomarkers in retinal and brain diseases. Invest Opthalmol Vis Sci 58: BIO227. PubMed

Stefánsson E, Olafsdottir OB, Eliasdottir TS et al. (2019): Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog Retin Eye Res 70: 1–22. PubMed

Svrčinová T, Hok P, Šínová I et al. (2020): Changes in oxygen saturation and the retinal nerve fibre layer in patients with optic neuritis associated with multiple sclerosis in a 6‐month follow‐up. Acta Ophthalmol 98: 841–847. PubMed PMC

Tranquart F, Bergès O, Koskas P, Arsene S, Rossazza C, Pisella P‐J & Pourcelot L (2003): Color doppler imaging of orbital vessels: personal experience and literature review. J Clin Ultrasound JCU 31: 258–273. PubMed

Türksever C, Orgül S & Todorova MG (2015): Reproducibility of retinal oximetry measurements in healthy and diseased retinas. Acta Ophthalmol 93: e439–e445. PubMed

Vehmeijer WB, Magnusdottir V, Eliasdottir TS, Hardarson SH, Schalij‐Delfos NE & Stefánsson E (2016): Retinal oximetry with scanning laser ophthalmoscope in infants. PLoS one 11: e0148077. PubMed PMC

Vosborg F, Malmqvist L & Hamann S (2020): Non‐invasive measurement techniques for quantitative assessment of optic nerve head blood flow. Eur J Ophthalmol 30: 235–244. PubMed

Waizel M, Türksever C & Todorova MG (2018): Normative values of retinal vessel oximetry in healthy children against adults. Acta Ophthalmol 96: e828–e834. PubMed

Wei X, Balne PK, Meissner KE, Barathi VA, Schmetterer L & Agrawal R (2018): Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol 63: 646–664. PubMed

Yang W, Fu Y, Dong Y, Lin L, Huang X, Li Y, Lin X & Gao Q (2016): Retinal vessel oxygen saturation in a healthy young Chinese population. Acta Ophthalmol 94: 373–379. PubMed

Yip W, Siantar R, Perera SA, Milastuti N, Ho KK, Tan B, Wong TY & Cheung CY (2014): Reliability and determinants of retinal vessel oximetry measurements in healthy eyes. Invest Ophthalmol Vis Sci 55: 7104–7110. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...