Temperature preferences drive additive biotic homogenization of Orthoptera assemblages
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
35611582
PubMed Central
PMC9131121
DOI
10.1098/rsbl.2022.0055
Knihovny.cz E-resources
- Keywords
- additive homogenization, insect decline, timeseries,
- MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Orthoptera * MeSH
- Grassland * MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The degradation of natural habitats is causing ongoing homogenization of biological communities and declines in terrestrial insect biodiversity, particularly in agricultural landscapes. Orthoptera are focal species of nature conservation and experienced significant diversity losses over the past decades. However, the causes underlying these changes are not yet fully understood. We analysed changes in Orthoptera assemblages surveyed in 1988, 2004 and 2019 on 198 plots distributed across four major grassland types in Central Europe. We demonstrated compositional differences in Orthoptera assemblages found in wet, dry and mesic grasslands, as well as ruderal habitats decreased, indicating biotic homogenization. However, mean α-diversity of Orthoptera assemblages increased over the study period. We detected increasing numbers of species with preferences for higher temperatures in mesic and wet grasslands. By analysing the temperature, moisture and vegetation preferences of Orthoptera, we found that additive homogenization was driven by a loss of species adapted to extremely dry and nitrogen-poor habitats and a parallel spread of species preferring warmer macroclimates.
Blumenstraße 5 85395 Wolfersdorf Germany
Büro für Faunistik und Umweltbildung Herrleinstr 2 97437 Hassfurt Germany
See more in PubMed
Newbold T, et al. . 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45-50. (10.1038/nature14324) PubMed DOI
van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417-420. (10.1126/science.aax9931) PubMed DOI
Samways MJ, et al. . 2020. Solutions for humanity on how to conserve insects. Biol. Conserv. 242, 108427. (10.1016/j.biocon.2020.108427) DOI
Harvey JA, et al. . 2020. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174-176. (10.1038/s41559-019-1079-8) PubMed DOI
Mori AS, Isbell F, Seidl R. 2018. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549-564. (10.1016/j.tree.2018.04.012) PubMed DOI PMC
Olden JD, LeRoy Poff N, Douglas MR, Douglas ME, Fausch KD. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18-24. (10.1016/j.tree.2003.09.010) PubMed DOI
Olden JD. 2006. Biotic homogenization: a new research agenda for conservation biogeography. J. Biogeogr. 33, 2027-2039. (10.1111/j.1365-2699.2006.01572.x) DOI
Li S, Cadotte MW, Meiners SJ, Hua Z, Jiang L, Shu W. 2015. Species colonisation, not competitive exclusion, drives community overdispersion over long-term succession. Ecol. Lett. 18, 964-973. (10.1111/ele.12476) PubMed DOI
Socolar JB, Gilroy JJ, Kunin WE, Edwards DP. 2016. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67-80. (10.1016/j.tree.2015.11.005) PubMed DOI
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. 2019. Fungal–bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841. (10.1038/s41467-019-12798-y) PubMed DOI PMC
Pacifici M, Visconti P, Butchart SHM, Watson JEM, Cassola FM, Rondinini C. 2017. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205-208. (10.1038/nclimate3223) DOI
Roth N, Hacker HH, Heidrich L, Friess N, García-Barros E, Habel JC, Thorn S, Müller J. 2021. Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography (Cop.) 44, 941-952. (10.1111/ecog.05522) DOI
Roth N, Zoder S, Zaman AA, Thorn S, Schmidl J. 2020. Long-term monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years. Insect Conserv. Divers. 13, 140-150. (10.1111/icad.12411) DOI
Rocha-Ortega M, Rodríguez P, Bried J, Abbott J, Córdoba-Aguilar A. 2020. Why do bugs perish? Range size and local vulnerability traits as surrogates of Odonata extinction risk. Proc. R. Soc. B 287, 20192645. (10.1098/rspb.2019.2645) PubMed DOI PMC
Gámez-Virués S, et al. . 2015. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. (10.1038/ncomms9568) PubMed DOI PMC
Samways MJ, Lockwood JA. 1998. Orthoptera conservation: pests and paradoxes. J. Insect Conserv. 2, 143-149. (10.1023/a:1009652016332) DOI
Fartmann T, Krämer B, Stelzner F, Poniatowski D. 2012. Orthoptera as ecological indicators for succession in steppe grassland. Ecol. Indic. 20, 337-344. (10.1016/j.ecolind.2012.03.002) DOI
Dvořák T, Hadrava J, Knapp M. 2022. The ecological niche and conservation value of Central European grassland orthopterans: a quantitative approach. Biol. Conserv. 265, 109406. (10.1016/j.biocon.2021.109406) DOI
Löffler F, Poniatowski D, Fartmann T. 2019. Orthoptera community shifts in response to land-use and climate change–lessons from a long-term study across different grassland habitats. Biol. Conserv. 236, 315-323. (10.1016/j.biocon.2019.05.058) DOI
Ingrisch S, Köhler G. 1998. Die Heuschrecken Mitteleuropas. Magdeburg, Germany: Die Neue Brehm-Bücherei.
Poniatowski D, Beckmann C, Löffler F, Münsch T, Helbing F, Samways MJ, Fartmann T. 2020. Relative impacts of land-use and climate change on grasshopper range shifts have changed over time. Glob. Ecol. Biogeogr. 29, 2190-2202. (10.1111/geb.13188) DOI
Reinhardt K, Köhler G, Maas S, Detzel P. 2005. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography (Cop.) 28, 593-602. (10.1111/j.2005.0906-7590.04285.x) DOI
Dierschke H, Briemle G. 2002. Kulturgrasland. Stuttgart, Germany: Ulmer Verlag.
Fumy F, Löffler F, Samways MJ, Fartmann T. 2020. Response of Orthoptera assemblages to environmental change in a low-mountain range differs among grassland types. J. Environ. Manage. 256, 109919. (10.1016/j.jenvman.2019.109919) PubMed DOI
Fischer J, Steinlechner D, Zehm A, Poniatowski D, Fartmann T, Beckmann A, Stettmer C. 2016. Die Heuschrecken Deutschlands und Nordtirols: Bestimmen - Beobachten - Schützen. Wiebelsheim, Germany: Quelle & Meyer Verlag.
Chao A, et al. . 2020. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292-314. (10.1111/1440-1703.12102) DOI
Hsieh TC, Ma KH, Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451-1456. (10.1111/2041-210X.12613) DOI
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127-135. (10.1016/j.tree.2008.10.008) PubMed DOI
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. (10.18637/jss.v067.i01) DOI
Hothorn T, Müller J, Schröder B, Kneib T, Brandl R. 2011. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol. Monogr. 81, 329-347. (10.1890/10-0602.1) DOI
Legendre P, Anderson MJ. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1-24. (10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2) DOI
Oksanen J, et al. . 2013. Package ‘vegan’. R Packag. ver. 2.0–8, 254. (10.4135/9781412971874.n145) DOI
Faith DP, Minchin PR, Belbin L. 1987. Compsitional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57-68. (10.1007/bf00038687) DOI
Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245-253. (10.1111/j.1541-0420.2005.00440.x) PubMed DOI
Gossner MM, et al. . 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266-269. (10.1038/nature20575) PubMed DOI
Schlumprecht H, Waeber G. 2003. Heuschrecken in Bayern. Baden-Wuerttemberg, Germany: Verlag Eugen Ulmer GmbH & Co Stuttgart.
Hendriks RJJ, Carvalheiro LG, Kleukers RMJC, Biesmeijer JC. 2013. Temporal–spatial dynamics in Orthoptera in relation to nutrient availability and plant species richness. PLoS ONE 8, 1-10. (10.1371/journal.pone.0071736) PubMed DOI PMC
Schirmel J, Gerlach R, Buhk C. 2019. Disentangling the role of management, vegetation structure, and plant quality for Orthoptera in lowland meadows. Insect Sci. 26, 366-378. (10.1111/1744-7917.12528) PubMed DOI
Brasseur GP, Jacob D, Schluck-Zöller S. 2017. Klimawandel in Deutschland—Entwicklung, Folgen, Risiken und Perspektiven. Heidelberg, Germany: Springer.
Chisté MN, Mody K, Gossner MM, Simons NK, Köhler G, Weisser WW, Blüthgen N. 2016. Losers, winners, and opportunists: how grassland land-use intensity affects orthopteran communities. Ecosphere 7, 1-15. (10.1002/ecs2.1545) DOI
Thorn S, König S, Fischer-Leipold O, Gombert J, Griese J, Thein J. 2022. Temperature preferences drive additive biotic homogenization of Orthoptera assemblages. FigShare. (10.6084/m9.figshare.c.5976644) PubMed DOI PMC
Temperature preferences drive additive biotic homogenization of Orthoptera assemblages
figshare
10.6084/m9.figshare.c.5976644