Ammonia Borane, NH3 BH3 : A Threshold Photoelectron-Photoion Coincidence Study of a Potential Hydrogen-Storage Material

. 2022 Jul 26 ; 28 (42) : e202201378. [epub] 20220624

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35622451

Grantová podpora
FI575/13-2 Deutsche Forschungsgemeinschaft
GRK 2112 Deutsche Forschungsgemeinschaft
PRIME Program Deutscher Akademischer Austauschdienst

We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X+ 2 E←X 1 A1 transition. Although the threshold photoelectron spectrum appears at first glance to be similar to the one of the isosteric ethane, the electronic situation differs markedly, due to different orbital energies. In addition, an appearance energy AE0K (NH3 BH3 , NH3 BH2 + )= 10.00±0.03 eV has been determined, corresponding to the loss of a hydrogen atom at the BH3 -site. From the data, a 0 K bond dissociation energy for the B-H bond in the cation of 71.5±3 kJ mol-1 was derived, whereas the one in the neutral compound has been estimated to be 419±10 kJ mol-1 .

Zobrazit více v PubMed

Stavila V., Li S., Dun C., Marple M. A. T., Mason H. E., Snider J. L., Reynolds Iii J. E., El Gabaly F., Sugar J. D., Spataru C. D., Zhou X., Dizdar B., Majzoub E. H., Chatterjee R., Yano J., Schlomberg H., Lotsch B. V., Urban J. J., Wood B. C., Allendorf M. D., Angew. Chem. Int. Ed. 2021, 60, 25815–25824. PubMed

Jena P., J. Phys. Chem. Lett. 2011, 2, 206–211.

Kobayashi H., Hayakawa A., Kunkuma K. D., Somarathne A., Okafor E. C., Proc. Combust. Inst. 2019, 37, 109–133.

Kumar A., Daw P., Milstein D., Chem. Rev. 2022, 122, 385–441. PubMed PMC

Demirci U. B., Energies 2020, 13, 3071;

Zhang G., Morrison D., Bao G., Yu H., Yoon C. W., Song T., Lee J., Ung A. T., Huang Z., Angew. Chem. Int. Ed. 2021, 60, 11725–11729. PubMed

Stephens F. H., Pons V., Tom Baker R., Dalton Trans. 2007, 2613–2626; PubMed

Marder T. B., Angew. Chem. Int. Ed. 2007, 46, 8116–8118; PubMed

Angew. Chem. 2007, 119, 8262–8264;

Mboyi C. D., Poinsot D., Roger J., Fajerwerg K., Kahn M. L., Hierso J.-C., Small 2021, 17, 2102759; PubMed

Eberle U., Felderhoff M., Schüth F., Angew. Chem. Int. Ed. 2009, 48, 6608–6630; PubMed

Angew. Chem. 2009, 121, 6732–6757.

Taylor R. C., Cluff C. L., Nature 1958, 182, 390–391;

Trudel S., Gilson D. F. R., Inorg. Chem. 2003, 42, 2814–2816; PubMed

Custelcean R., Dreger Z. A., J. Phys. Chem. B 2003, 107, 9231–9235;

Hess N. J., Bowden M. E., Parvanov V. M., Mundy C., Kathmann S. M., Schenter G. K., Autrey T., J. Chem. Phys. 2008, 128, 034508; PubMed

Smith J., Seshadri K. S., White D., J. Mol. Spectrosc. 1973, 45, 327–337;

Reynhardt E. C., Hoon C. F., J. Phys. C 1983, 16, 6137–6152;

Penner G. H., Chang Y. C. P., Hutzal J., Inorg. Chem. 1999, 38, 2868–2873; PubMed

Gunaydin-Sen O., Achey R., Dalal N. S., Stowe A., Autrey T., J. Phys. Chem. B 2007, 111, 677–681; PubMed

Allis D. G., Kosmowski M. E., Hudson B. S., J. Am. Chem. Soc. 2004, 126, 7756–7757; PubMed

Hoon C. F., Reynhardt E. C., J. Phys. C 1983, 16, 6129–6136;

Klooster W. T., Koetzle T. F., Siegbahn P. E. M., Richardson T. B., Crabtree R. H., J. Am. Chem. Soc. 1999, 121, 6337–6343.

Lloyd D. R., Lynaugh N., J. Chem. Soc. D 1970, 1545–1546;

Sams R. L., Xantheas S. S., Blake T. A., J. Phys. Chem. A 2012, 116, 3124–3136. PubMed

Lloyd D. R., Lynaugh N., J. Chem. Soc. Faraday Trans. 2 1972, 68, 947–958.

Suenram R. D., Thorne L. R., Chem. Phys. Lett. 1981, 78, 157–160;

Thorne L. R., Suenram R. D., Lovas F. J., J. Chem. Phys. 1983, 78, 167–171.

Vormann K., Dreizler H., Z. Naturforsch. A 1991, 46, 1060–1062.

Westbrook B. R., Valencia E. M., Rushing S. C., Tschumper G. S., Fortenberry R. C., J. Chem. Phys. 2021, 154, 041104. PubMed

Matus M. H., Grant D. J., Nguyen M. T., Dixon D. A., J. Phys. Chem. C 2009, 113, 16553–16560. PubMed

Baer T., Tuckett R. P., Phys. Chem. Chem. Phys. 2017, 19, 9698–9723. PubMed

Fischer I., Pratt S. T., Phys. Chem. Chem. Phys. 2022, 24, 1944–1959; PubMed

Dyke J. M., Phys. Chem. Chem. Phys. 2019, 21, 9106–9136. PubMed

Schleier D., Humeniuk A., Reusch E., Holzmeier F., Nunez-Reyes D., Alcaraz C., Garcia G. A., Loison J.-C., Fischer I., Mitric R., J. Phys. Chem. Lett. 2018, 9, 5921–5925; PubMed

Mukhopadhyay D. P., Schleier D., Fischer I., Loison J. C., Alcaraz C., Garcia G. A., Phys. Chem. Chem. Phys. 2020, 22, 1027–1034; PubMed

Schleier D., Schaffner D., Gerlach M., Hemberger P., Fischer I., Phys. Chem. Chem. Phys. 2022, 24, 20–24; PubMed

Fischer K. H., Schneider M., Fischer I., Pfaffinger B., Braunschweig H., Sztáray B., Bodi A., Chem. Eur. J. 2012, 18, 4533–4540; PubMed

Holzmeier F., Lang M., Hemberger P., Bodi A., Schäfer M., Dewhurst R. D., Braunschweig H., Fischer I., Chem. Eur. J. 2014, 20, 9683–9692. PubMed

Mukhopadhyay D. P., Schleier D., Wirsing S., Ramler J., Kaiser D., Reusch E., Hemberger P., Preitschopf T., Krummenacher I., Engels B., Fischer I., Lichtenberg C., Chem. Sci. 2020, 11, 7562–7568. PubMed PMC

Hemberger P., Bodi A., Bierkandt T., Köhler M., Kaczmarek D., Kasper T., Energy Fuels 2021, 35, 16265–16302.

Jacovella U., Stein C. J., Grütter M., Freitag L., Lauzin C., Reiher M., Merkt F., Phys. Chem. Chem. Phys. 2018, 20, 1072–1081; PubMed

Lee K. L. K., Rabidoux S. M., Stanton J. F., J. Phys. Chem. A 2016, 120, 7548–7553. PubMed

Sulzbach H. M., Graham D., Stephens J. C., H. F. Schaefer  III , Acta Chem. Scand. 1997, 51, 547–555.

Baker A. D., Baker C., Brundle C. R., Turner D. W., Int. J. Mass Spectrom. Ion Phys. 1968, 1, 285–301.

Müller-Dethlefs K., Schlag E. W., Angew. Chem. Int. Ed. 1998, 37, 1346–1374; PubMed

Angew. Chem. 1998, 110, 1414–1444.

Yuan B., Shin J.-W., Bernstein E. R., J. Chem. Phys. 2016, 144, 144315. PubMed

Sztáray B., Bodi A., Baer T., J. Mass Spectrom. 2010, 45, 1233–1245. PubMed

Johnson M., Bodi A., Schulz L., Gerber T., Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 610, 597–603;

Sztáray B., Voronova K., Torma K. G., Covert K. J., Bodi A., Hemberger P., Gerber T., Osborn D. L., J. Chem. Phys. 2017, 147, 013944. PubMed

Sztáray B., Baer T., Rev. Sci. Instrum. 2003, 74, 3763–3768.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Rev. E.01, Gaussian Inc, Wallingford, CT, 2009. PubMed

Gozem S., Krylov A. I., WIREs Comput. Mol. Sci. 2022, 12, e1546.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace