Ammonia Borane, NH3 BH3 : A Threshold Photoelectron-Photoion Coincidence Study of a Potential Hydrogen-Storage Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FI575/13-2
Deutsche Forschungsgemeinschaft
GRK 2112
Deutsche Forschungsgemeinschaft
PRIME Program
Deutscher Akademischer Austauschdienst
PubMed
35622451
PubMed Central
PMC9401591
DOI
10.1002/chem.202201378
Knihovny.cz E-zdroje
- Klíčová slova
- Jahn-Teller effect, ammonia borane, hydrogen storage, molecular orbitals, photoelectron spectroscopy,
- Publikační typ
- časopisecké články MeSH
We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X+ 2 E←X 1 A1 transition. Although the threshold photoelectron spectrum appears at first glance to be similar to the one of the isosteric ethane, the electronic situation differs markedly, due to different orbital energies. In addition, an appearance energy AE0K (NH3 BH3 , NH3 BH2 + )= 10.00±0.03 eV has been determined, corresponding to the loss of a hydrogen atom at the BH3 -site. From the data, a 0 K bond dissociation energy for the B-H bond in the cation of 71.5±3 kJ mol-1 was derived, whereas the one in the neutral compound has been estimated to be 419±10 kJ mol-1 .
Zobrazit více v PubMed
Stavila V., Li S., Dun C., Marple M. A. T., Mason H. E., Snider J. L., Reynolds Iii J. E., El Gabaly F., Sugar J. D., Spataru C. D., Zhou X., Dizdar B., Majzoub E. H., Chatterjee R., Yano J., Schlomberg H., Lotsch B. V., Urban J. J., Wood B. C., Allendorf M. D., Angew. Chem. Int. Ed. 2021, 60, 25815–25824. PubMed
Jena P., J. Phys. Chem. Lett. 2011, 2, 206–211.
Kobayashi H., Hayakawa A., Kunkuma K. D., Somarathne A., Okafor E. C., Proc. Combust. Inst. 2019, 37, 109–133.
Kumar A., Daw P., Milstein D., Chem. Rev. 2022, 122, 385–441. PubMed PMC
Demirci U. B., Energies 2020, 13, 3071;
Zhang G., Morrison D., Bao G., Yu H., Yoon C. W., Song T., Lee J., Ung A. T., Huang Z., Angew. Chem. Int. Ed. 2021, 60, 11725–11729. PubMed
Stephens F. H., Pons V., Tom Baker R., Dalton Trans. 2007, 2613–2626; PubMed
Marder T. B., Angew. Chem. Int. Ed. 2007, 46, 8116–8118; PubMed
Angew. Chem. 2007, 119, 8262–8264;
Mboyi C. D., Poinsot D., Roger J., Fajerwerg K., Kahn M. L., Hierso J.-C., Small 2021, 17, 2102759; PubMed
Eberle U., Felderhoff M., Schüth F., Angew. Chem. Int. Ed. 2009, 48, 6608–6630; PubMed
Angew. Chem. 2009, 121, 6732–6757.
Taylor R. C., Cluff C. L., Nature 1958, 182, 390–391;
Trudel S., Gilson D. F. R., Inorg. Chem. 2003, 42, 2814–2816; PubMed
Custelcean R., Dreger Z. A., J. Phys. Chem. B 2003, 107, 9231–9235;
Hess N. J., Bowden M. E., Parvanov V. M., Mundy C., Kathmann S. M., Schenter G. K., Autrey T., J. Chem. Phys. 2008, 128, 034508; PubMed
Smith J., Seshadri K. S., White D., J. Mol. Spectrosc. 1973, 45, 327–337;
Reynhardt E. C., Hoon C. F., J. Phys. C 1983, 16, 6137–6152;
Penner G. H., Chang Y. C. P., Hutzal J., Inorg. Chem. 1999, 38, 2868–2873; PubMed
Gunaydin-Sen O., Achey R., Dalal N. S., Stowe A., Autrey T., J. Phys. Chem. B 2007, 111, 677–681; PubMed
Allis D. G., Kosmowski M. E., Hudson B. S., J. Am. Chem. Soc. 2004, 126, 7756–7757; PubMed
Hoon C. F., Reynhardt E. C., J. Phys. C 1983, 16, 6129–6136;
Klooster W. T., Koetzle T. F., Siegbahn P. E. M., Richardson T. B., Crabtree R. H., J. Am. Chem. Soc. 1999, 121, 6337–6343.
Lloyd D. R., Lynaugh N., J. Chem. Soc. D 1970, 1545–1546;
Sams R. L., Xantheas S. S., Blake T. A., J. Phys. Chem. A 2012, 116, 3124–3136. PubMed
Lloyd D. R., Lynaugh N., J. Chem. Soc. Faraday Trans. 2 1972, 68, 947–958.
Suenram R. D., Thorne L. R., Chem. Phys. Lett. 1981, 78, 157–160;
Thorne L. R., Suenram R. D., Lovas F. J., J. Chem. Phys. 1983, 78, 167–171.
Vormann K., Dreizler H., Z. Naturforsch. A 1991, 46, 1060–1062.
Westbrook B. R., Valencia E. M., Rushing S. C., Tschumper G. S., Fortenberry R. C., J. Chem. Phys. 2021, 154, 041104. PubMed
Matus M. H., Grant D. J., Nguyen M. T., Dixon D. A., J. Phys. Chem. C 2009, 113, 16553–16560. PubMed
Baer T., Tuckett R. P., Phys. Chem. Chem. Phys. 2017, 19, 9698–9723. PubMed
Fischer I., Pratt S. T., Phys. Chem. Chem. Phys. 2022, 24, 1944–1959; PubMed
Dyke J. M., Phys. Chem. Chem. Phys. 2019, 21, 9106–9136. PubMed
Schleier D., Humeniuk A., Reusch E., Holzmeier F., Nunez-Reyes D., Alcaraz C., Garcia G. A., Loison J.-C., Fischer I., Mitric R., J. Phys. Chem. Lett. 2018, 9, 5921–5925; PubMed
Mukhopadhyay D. P., Schleier D., Fischer I., Loison J. C., Alcaraz C., Garcia G. A., Phys. Chem. Chem. Phys. 2020, 22, 1027–1034; PubMed
Schleier D., Schaffner D., Gerlach M., Hemberger P., Fischer I., Phys. Chem. Chem. Phys. 2022, 24, 20–24; PubMed
Fischer K. H., Schneider M., Fischer I., Pfaffinger B., Braunschweig H., Sztáray B., Bodi A., Chem. Eur. J. 2012, 18, 4533–4540; PubMed
Holzmeier F., Lang M., Hemberger P., Bodi A., Schäfer M., Dewhurst R. D., Braunschweig H., Fischer I., Chem. Eur. J. 2014, 20, 9683–9692. PubMed
Mukhopadhyay D. P., Schleier D., Wirsing S., Ramler J., Kaiser D., Reusch E., Hemberger P., Preitschopf T., Krummenacher I., Engels B., Fischer I., Lichtenberg C., Chem. Sci. 2020, 11, 7562–7568. PubMed PMC
Hemberger P., Bodi A., Bierkandt T., Köhler M., Kaczmarek D., Kasper T., Energy Fuels 2021, 35, 16265–16302.
Jacovella U., Stein C. J., Grütter M., Freitag L., Lauzin C., Reiher M., Merkt F., Phys. Chem. Chem. Phys. 2018, 20, 1072–1081; PubMed
Lee K. L. K., Rabidoux S. M., Stanton J. F., J. Phys. Chem. A 2016, 120, 7548–7553. PubMed
Sulzbach H. M., Graham D., Stephens J. C., H. F. Schaefer III , Acta Chem. Scand. 1997, 51, 547–555.
Baker A. D., Baker C., Brundle C. R., Turner D. W., Int. J. Mass Spectrom. Ion Phys. 1968, 1, 285–301.
Müller-Dethlefs K., Schlag E. W., Angew. Chem. Int. Ed. 1998, 37, 1346–1374; PubMed
Angew. Chem. 1998, 110, 1414–1444.
Yuan B., Shin J.-W., Bernstein E. R., J. Chem. Phys. 2016, 144, 144315. PubMed
Sztáray B., Bodi A., Baer T., J. Mass Spectrom. 2010, 45, 1233–1245. PubMed
Johnson M., Bodi A., Schulz L., Gerber T., Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 610, 597–603;
Sztáray B., Voronova K., Torma K. G., Covert K. J., Bodi A., Hemberger P., Gerber T., Osborn D. L., J. Chem. Phys. 2017, 147, 013944. PubMed
Sztáray B., Baer T., Rev. Sci. Instrum. 2003, 74, 3763–3768.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Rev. E.01, Gaussian Inc, Wallingford, CT, 2009. PubMed
Gozem S., Krylov A. I., WIREs Comput. Mol. Sci. 2022, 12, e1546.