State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled, práce podpořená grantem
PubMed
35622850
PubMed Central
PMC9140269
DOI
10.1371/journal.pone.0268777
PII: PONE-D-22-00989
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- analytický hierarchický proces * MeSH
- databáze faktografické MeSH
- ekosystém * MeSH
- fuzzy logika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
Although there are several articles that have carried out a systematic literature review of the analytical hierarchy process (AHP), many of them work with a limited number of analyzed documents. This article presents a computer-aided systematic literature review of articles related to AHP. The objectives are: (i) to identify AHP usage and research impact in different subject areas; (ii) to identify trends in the popularity of the AHP from the first introduction of the method in 1980 to the present; (iii) to identify the most common topics related to AHP and topic development over time. We process 35,430 documents related to AHP, published between 1980 and 2021, retrieved from the Scopus database. We provide detailed statistics about research interest, research impact in particular subject areas over the analyzed time period. We use Latent Dirichlet Allocation (LDA) using Gibbs sampling to perform topic modeling based on the corpus of abstracts. We identify nine topics related to AHP: Ecology & Ecosystems; Multi-criteria decision-making; Production and performance management; Sustainable development; Computer network, optimization and algorithms; Service quality; Fuzzy logic; Systematic evaluation; Risk assessment. We also present the individual topics trends over time and point out the possible future direction of AHP.
Zobrazit více v PubMed
Saaty TL. The Analytic Hierarchy Process. 1980. New York: Mc-Graw-Hill.
Saaty TL. Priority setting in complex problems. IEEE Transactions on Engineering Management. 1983;EM-30(3):140–55.
Vaidya OS, Kumar S. Analytic hierarchy process: An overview of applications. European Journal of Operational Research. 2006;169(1):1–29.
Emrouznejad A, Marra M. The state of the art development of AHP (1979–2017): a literature review with a social network analysis. International Journal of Production Research. 2017;55(22):6653–75.
Egger M, Smith GD, O’rourke K. Rationale, potentials, and promise of systematic reviews, 2001. URL:http://www.blackwellpublishing.com/medicine. 2013.
Tricco AC, Tetzlaff J, Moher D. The art and science of knowledge synthesis. Journal of clinical epidemiology. 2011;64(1):11–20. doi: 10.1016/j.jclinepi.2009.11.007 PubMed DOI
Saaty RW. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling. 1987;9(3):161–76.
Forman EH, Gass SI. The Analytic Hierarchy Process—An Exposition. Operations Research. 2001;49(4):469–86.
Saaty TL. Axiomatic Foundation of the Analytic Hierarchy Process. Management Science. 1984;32(7):841–855.
Subramanian N, Ramanathan R. A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics. 2012;138(2):215–41.
Tzeng G-H, Chiang C-H, Li C-W. Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications. 2007;32(4):1028–44.
Al-Harbi KMA-S. Application of the AHP in project management. International Journal of Project Management. 2001;19(1):19–27.
Ho W. Integrated analytic hierarchy process and its applications–A literature review. European Journal of Operational Research. 2008;186(1):211–28.
Tsaur S-H, Chang T-Y, Yen C-H. The evaluation of airline service quality by fuzzy MCDM. Tourism Management. 2002;23(2):107–15.
Chang D-Y. Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research. 1996;95(3):649–55.
Ishizaka A, Labib A. Review of the main developments in the analytic hierarchy process. Expert Systems with Applications. 2011;38(11):14336–45.
Taylan O, Bafail AO, Abdulaal RMS, Kabli MR. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing. 2014;17:105–16.
Kahraman C, Ertay T, Büyüközkan and G. A fuzzy optimization model for QFD planning process using analytic network approach. European Journal of Operational Research. 2006;171(2):390–411.
Saaty TL. How to make a decision: The analytic hierarchy process. European Journal of Operational Research. 1990;48(1):9–26. PubMed
Vargas LG. An overview of the analytic hierarchy process and its applications. European Journal of Operational Research. 1990;48(1):2–8. PubMed
Sipahi S, Timor M. The analytic hierarchy process and analytic network process: an overview of applications. Management Decision. 2010;48(5):775–808.
Apostolou B, Hassell JM. An overview of the analytic hierarchy process and its use in accounting research. Journal of Accounting Literature. 1993;12(1):1–28.
Liberatore MJ, Nydick RL. The analytic hierarchy process in medical and health care decision making: A literature review. European Journal of Operational Research. 2008;189(1):194–207.
Baas J, Schotten M, Plume A, Côté G, Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies. 2020;1(1):377–86.
Hirsch JE. An index to quantify an individual’s scientific research output. PNAS. 2005;102(46):16569–72. doi: 10.1073/pnas.0507655102 PubMed DOI PMC
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research. 2003;3(2003):993–1022.
Grün B, Hornik K. Topicmodels: An R Package for Fitting Topic Models. Journal of Statistical Software. 2011;40:1–30.
Gelfand AE. Gibbs Sampling. Journal of the American Statistical Association. 2000;95(452):1300–4.
Griffiths TL, Steyvers M. Finding scientific topics. Proc Natl Acad Sci U S A. 2004;6;101 Suppl 1:5228–35. doi: 10.1073/pnas.0307752101 PubMed DOI PMC
Phan X-H, Nguyen L, Horiguchi S. Learning to Classify Short and Sparse Text & Web with Hidden Topics from Large-Scale Data Collections. 2008. 91 p.
Chuang J, Manning CD, Heer J. Termite: Visualization techniques for assessing textual topic models.” In Proceedings of the international working conference on advanced visual interfaces, edited by Tortora Genny, Levialdi Stefano, Tucci Maurizzio, 74–77. 2012. Association for Computing Machinery: New York.
Sarkis J. A strategic decision framework for green supply chain management. Journal of Cleaner Production. 2003;11(4):397–409.
Ghodsypour SH, O’Brien C. A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. International Journal of Production Economics. 1998;56–57:199–212.
Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21. doi: 10.1016/j.diabres.2011.10.029 PubMed DOI
Chan FTS, Kumar N, Tiwari MK, Lau HCW, Choy KL. Global supplier selection: a fuzzy-AHP approach. International Journal of Production Research. 2008;46(14):3825–57.
Wang J-J, Jing Y-Y, Zhang C-F, Zhao J-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews. 2009;13(9):2263–78.
Efendigil T, Önüt S, Kongar E. A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness. Computers & Industrial Engineering. 2008;54(2):269–87.
Mardani A, Jusoh A, Zavadskas EK, Cavallaro F, Khalifah Z. Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability. 2015;7(10):13947–84.
Kahraman C, Kaya İ, Cebi S. A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy. 2009;34(10):1603–16.
Ramanathan R. A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management. 2001;63(1):27–35. doi: 10.1006/jema.2001.0455 PubMed DOI
Lima Junior FR, Osiro L, Carpinetti LCR. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing. 2014;21:194–209.
Chan FTS, Kumar N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega. 2007;35(4):417–31.
Chan FTS. Performance Measurement in a Supply Chain. Int J Adv Manuf Technol. 2003;21(7):534–48.
Pourghasemi HR, Pradhan B, Gokceoglu C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards. 2012;63(2):965–96.
Yalcin A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA. 2008;72(1):1–12.
Dai FC, Lee CF, Zhang XH. GIS-based geo-environmental evaluation for urban land-use planning: a case study. Engineering Geology. 2001;61(4):257–71.
Tzeng G-H, Huang J-J. Multiple Attribute Decision Making: Methods and Applications. 2011
Rezaei J. Best-worst multi-criteria decision-making method. Omega. 2015;53:49–57.
Pohekar SD, Ramachandran M. Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews. 2004;8(4):365–81.
Handfield R, Walton SV, Sroufe R, Melnyk SA. Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process. European Journal of Operational Research. 2002;141(1):70–87.
Seuring S. A review of modeling approaches for sustainable supply chain management. Decision Support Systems. 2013;54(4):1513–20.
Brandenburg M, Govindan K, Sarkis J, Seuring S. Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research. 2014;233(2):299–312.
Wu F, Webster CJ. Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation. Environ Plann B Plann Des. 1998;25(1):103–26.
Song Q, Jamalipour A. Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques. IEEE Wireless Communications. 2005. Jun;12(3):42–8.
Lin M-C, Wang C-C, Chen M-S, Chang CA. Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry. 2008;59(1):17–31.
Mouzon G, Yildirim MB. A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering. 2008;1(2):105–16.
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al.. The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clin Cancer Res. 2009;15(17):5323–37. doi: 10.1158/1078-0432.CCR-09-0737 PubMed DOI PMC
Mikhailov L. Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets and Systems. 2003; 134(3):365–385. doi: 10.1016/S0165-0114(02)00383-4 DOI
Alonso JA, Lamata MT. Consistency in the analytic hierarchy process: a new approach. Int J Unc Fuzz Knowl Based Syst. 2006;14(04):445–59.
San Cristóbal JR. Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable Energy. 2011;36(2):498–502.
Hermann BG, Kroeze C, Jawjit W. Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of Cleaner Production. 2007;15(18):1787–96.
Esawi AMK, Farag MM. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design. 2007;28(9):2394–401.
Yüksel İ, Dagˇdeviren M. Using the analytic network process (ANP) in a SWOT analysis–A case study for a textile firm. Information Sciences. 2007;177(16):3364–82.
Kutlu AC, Ekmekçioğlu M. Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications. 2012;39(1):61–7.
Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI et al.. The Relationship Between Productivity and Species Richness. Annual Review of Ecology and Systematics Vol. 30:257–300. 10.1146/annurev.ecolsys.30.1.257 DOI
Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al.. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017. Jun;128:40–50. doi: 10.1016/j.diabres.2017.03.024 Epub 2017 Mar 31. . PubMed DOI
Bower R.G., Benson A.J., Malbon R., Helly J.C., Frenk C.S., Baugh C.M., et al.. Breaking the hierarchy of galaxy formation. Monthly Notices of the Royal Astronomical Society 370 (2); 645–655.
Meldrum FC, Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews. 2008. Nov;108(11):4332–432. doi: 10.1021/cr8002856 . PubMed DOI
Fox NK, Brenner SE, Chandonia JM. SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 2014;42(Database issue):D304–D309. doi: 10.1093/nar/gkt1240 PubMed DOI PMC
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014. Feb;103(2):137–49. doi: 10.1016/j.diabres.2013.11.002 Epub 2013 Dec 1. . PubMed DOI
Cole ER. Intersectionality and research in psychology. Am Psychol. 2009. Apr;64(3):170–80. doi: 10.1037/a0014564 . PubMed DOI
Forman E., Peniwati K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. European Journal of Operational Research. 1998; 180(1):169–169.
Hadjsaid N, Canard J, Dumas F. Dispersed generation impact on distribution networks. IEEE Computer Applications in Power, 12:22–28.
Mathiyazhagan K, Govindan K, Noorul Haq A. Pressure analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. International Journal of Production Research. 2014;52(1):188–202.
Tsai W-H, Hung S-J. A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure. International Journal of Production Research. 2009;47(18):4991–5017.
Govindan K, Kaliyan M, Kannan D, Haq AN. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. International Journal of Production Economics. 2014;147:555–68.
Luthra S, Mangla SK, Xu L, Diabat A. Using AHP to evaluate barriers in adopting sustainable consumption and production initiatives in a supply chain. International Journal of Production Economics. 2016;181:342–9.
Luthra S, Mangla SK. Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Safety and Environmental Protection. 2018;117:168–79.
Lu LYY, Wu CH, Kuo T-C. Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis. International Journal of Production Research. 2007;45(18–19):4317–31.
Yakovleva N, Sarkis J, Sloan T. Sustainable benchmarking of supply chains: the case of the food industry. International Journal of Production Research. 2012;50(5):1297–317.
Azadnia AH, Saman MZM, Wong KY. Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process. International Journal of Production Research. 2015;53(2):383–408.
Scott J, Ho W, Dey PK, Talluri S. A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments. International Journal of Production Economics. 2015;166:226–37.
Luthra S, Govindan K, Kannan D, Mangla SK, Garg CP. An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of Cleaner Production. 2017;140:1686–98.
Dweiri F, Kumar S, Khan SA, Jain V. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications. 2016;62:273–83.
Zimmer K, Fröhling M, Schultmann F. Sustainable supplier management–a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research. 2016;54(5):1412–42.
Bhattacharya A, Sarkar B, Mukherjee SK. Integrating AHP with QFD for robot selection under requirement perspective. International Journal of Production Research. 2005;43(17):3671–85.
Wei C-C, Chien C-F, Wang M-JJ. An AHP-based approach to ERP system selection. International Journal of Production Economics. 2005;96(1):47–62.
Bouzon M, Govindan K, Rodriguez CMT, Campos LMS. Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling. 2016;108:182–97.
Hu Y, Wu L, Shi C, Wang Y, Zhu F. Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS. International Journal of Production Research. 2020;58(3):748–57.
Vidal Vieira J, Toso M, Silva JEAR, Ribeiro PC. An AHP-based framework for logistics operations in distribution centres. International Journal of Production Economics. 2017;187.
Ishizaka A, Lolli F, Balugani E, Cavallieri R, Gamberini R. DEASort: Assigning items with data envelopment analysis in ABC classes. International Journal of Production Economics. 2018;199:7–15.
Samvedi A, Jain V, Chan FTS. Quantifying risks in a supply chain through integration of fuzzy AHP and fuzzy TOPSIS. International Journal of Production Research. 2013;51(8):2433–42.
Dong Q, Cooper O. An orders-of-magnitude AHP supply chain risk assessment framework. International Journal of Production Economics. 2016;182:144–56.
Ilbahar E, Karaşan A, Cebi S, Kahraman C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science. 2018;103:124–36.
Kumar A, Zavadskas EK, Mangla SK, Agrawal V, Sharma K, Gupta D. When risks need attention: adoption of green supply chain initiatives in the pharmaceutical industry. International Journal of Production Research. 2019;57(11):3554–76.
Harzing A-W, Alakangas S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics. 2016;106(2):787–804.
Martín-Martín A, Orduna-Malea E, López-Cózar ED. Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison. Scientometrics. 2018;116(3):2175–88. PubMed PMC
Asmussen C. B., Møller C. Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data. 2019;6(1). doi: 10.1186/s40537-019-0255-7 DOI
Huy Duong Q., Zhou L., Meng M., Van Nguyen T., Ieromonachou P., Tiep Nguyen D. Understanding product returns: A systematic literature review using machine learning and bibliometric analysis, International Journal of Production Economics. 2022;243(2022):108340.
Guo Y, Barnes SJ, Jia Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management. 2017;59:467–83.
Tirunillai S, Tellis GJ. Mining Marketing Meaning from Online Chatter: Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. Journal of Marketing Research. 2014;51(4):463–79.
Calheiros AC, Moro S, Rita P. Sentiment Classification of Consumer-Generated Online Reviews Using Topic Modeling. Journal of Hospitality Marketing & Management. 2017;26(7):675–93.
Boussalis C, Coan TG. Text-mining the signals of climate change doubt. Global Environmental Change. 2016;36:89–100.
D’Amato D, Droste N, Allen B, Kettunen M, Lähtinen K, Korhonen J, et al.. Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production. 2017;168:716–34.
Mäntylä MV, Graziotin D, Kuutila M. The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review. 2018;27:16–32.
Debortoli S, Müller O, Junglas I, Brocke J vom. Text Mining For Information Systems Researchers: An Annotated Topic Modeling Tutorial. Communications of the Association for Information Systems [Internet]. 2016;39(1). Available from: https://aisel.aisnet.org/cais/vol39/iss1/7