Effects of Trace Metals and Municipal Wastewater on the Ephemeroptera, Plecoptera, and Trichoptera of a Stream Community
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018099
Ministry of Education, Youth and Sports of the Czech Republic (project CENAKVA)
PubMed
35625376
PubMed Central
PMC9137756
DOI
10.3390/biology11050648
PII: biology11050648
Knihovny.cz E-zdroje
- Klíčová slova
- anthropogenic disturbances, aquatic insect, environmental gradients, heavy metals, industrial pollution, wastewater treatment plant,
- Publikační typ
- časopisecké články MeSH
Abundances of EPT larvae sampled in a Central European locality affected by mining and smelting, as well as by the continual inflow of treated communal wastewaters (WWs), were recorded. High concentrations of trace metals in water (maximum 1200 µg·L-1 for zinc) and sediments (maximum 140,000 mg·kg-1 in dry weight for lead) were found at the most contaminated sites. The highest loads of pesticides, pharmaceuticals, and illegal drugs were found under the WW effluent. Other associated factors such as the physicochemical parameters of the water and alterations to microhabitats were also evaluated and taken into account. Although EPT richness was lower at affected sites, abundances did not fall. Stoneflies were dominant at unaffected sites, while caddisflies dominated at affected sites. Only baetid mayflies were detected at the sites contaminated by trace metals and WWs; ephemerellid, heptageniid, and leptophlebiid mayflies were absent from these sites. The site contaminated by trace metals was also inhabited by numerous limnephilid caddisflies, in which limb malformations were detected in up to 11.8% of all specimens of a single taxon. Downstream from the entrance of the WWs, the locality was dominated by hydropsychid caddisflies. The increasing prevalence of predator or passive filter-feeding strategies in these EPT communities was significantly related to increasing water conductivity and acute ecosystemic exposure to 'poorly treated' WWs.
Zobrazit více v PubMed
Eriksen T.E., Brittain J.E., Soli G., Jacobsen D., Goethals P., Friberg N. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 2021;126:107609. doi: 10.1016/j.ecolind.2021.107609. DOI
Carter J.L., Resh V.H., Hannaford M.J. Macroinvertebrates as biotic indicators of environmental quality. In: Lamberti G.A., Hauer F.R., editors. Methods in Stream Ecology. Volume 2: Ecosystem Function. Elsevier; London, UK: 2017. pp. 293–318.
Johnson R.C., Jin H.S., Carreiro M.M., Jack J.D. Macroinvertebrate community structure, secondary production and trophic-level dynamics in urban streams affected by non-point-source pollution. Freshw. Biol. 2013;58:843–857. doi: 10.1111/fwb.12090. DOI
Wagenhoff A., Townsend C.R., Matthaei C.D. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. J. Appl. Ecol. 2012;49:892–902. doi: 10.1111/j.1365-2664.2012.02162.x. DOI
Johnson R.C., Carreiro M.M., Jin H.S., Jack J.D. Within-year temporal variation and life-cycle seasonality affect stream macroinvertebrate community structure and biotic metrics. Ecol. Indic. 2012;13:206–214. doi: 10.1016/j.ecolind.2011.06.004. DOI
Zwick P. Historische Dokumente zur Fauna der Elbe bei Dresden vor hundert Jahren. Lauterbornia. 1999;37:97–112.
Marten M. Environmental monitoring in Baden-Württemberg with special reference to biocoenotic trend-monitoring of macrozoobenthos in rivers and methodical requirements for evaluation of long-term biocoenotic changes. Aquat. Ecol. 2001;35:159–171. doi: 10.1023/A:1011447307618. DOI
Štěrba O., Měkotová J., Benář V., Šarapatka B., Rychnovská M., Kubíček F., Řehořek V. River Landscape and Its Ecosystems. 1st ed. Univerzita Palackého; Olomouc, Czech Republic: 2008. pp. 295–335.
Blann K.L., Anderson J.L., Sands G.R., Vondracek B. Effects of agricultural drainage on aquatic ecosystems: A review. Crit. Rev. Environ. Sci. Technol. 2009;39:909–1001. doi: 10.1080/10643380801977966. DOI
Stanford J.A., Ward J., Liss W.J., Frissell C.A., Williams R.N., Lichatowich J.A., Coutant C.C. A general protocol for restoration of regulated rivers. Regul. Rivers Res. Manag. 1996;12:391–413. doi: 10.1002/(SICI)1099-1646(199607)12:4/5<391::AID-RRR436>3.0.CO;2-4. DOI
Beermann A.J., Elbrecht V., Karnatz S., Ma L., Matthaei C.D., Piggott J.J., Leese F. Multiple-stressor effects on stream macroinvertebrate communities: A mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci. Total Environ. 2018;610–611:961–971. doi: 10.1016/j.scitotenv.2017.08.084. PubMed DOI
Diamond J.M. Ecology—Laboratory, Field and Natural Experiments. Nature. 1983;304:586–587. doi: 10.1038/304586a0. DOI
Directive 2000/60/EC, PE-CONS 3639/1/100 Rev 1. European Commission; Luxemburg: 2000. Establishing a Framework for Community Action in the Field of Water Policy.
Grabicova K., Grabic R., Fedorova G., Kolarova J., Turek J., Brooks B.W., Randak T. Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. Environ. Pollut. 2020;261:114150. doi: 10.1016/j.envpol.2020.114150. PubMed DOI
Kotková K., Nováková T., Tůmová Š., Kiss T., Popelka J., Faměra M. Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology. 2019;329:46–57. doi: 10.1016/j.geomorph.2018.12.010. DOI
Clements W.H., Carlisle D.M., Lazorchak J.M., Johnson P.C. Heavy metals structure benthic communities in Colorado mountain streams. Ecol. Appl. 2000;10:626–638. doi: 10.1890/1051-0761(2000)010[0626:HMSBCI]2.0.CO;2. DOI
Qu X., Wu N., Tang T., Cai Q., Park Y.-S. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. Ann. De Limnol.-Int. J. Limnol. 2010;46:291–302. doi: 10.1051/limn/2010027. DOI
Norris R., Lake P., Swain R. Ecological effects of mine effluents on the South Esk River, North-eastren Tasmania. III. Benthic Macroinvertebrates. Mar. Freshw. Res. 1982;33:789–809. doi: 10.1071/MF9820789. DOI
Malmqvist B., Hoffsten P.O. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Res. 1999;33:2415–2423. doi: 10.1016/S0043-1354(98)00462-X. DOI
Hedtke S.F. Structure and Function of Copper-Stressed Aquatic Microcosms. Aquat. Toxicol. 1984;5:227–244. doi: 10.1016/0166-445X(84)90022-5. DOI
Ehrman J.M., Barlocher F., Wennrich R., Krauss G.J., Krauss G. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany. Sci. Total Environ. 2008;389:486–496. doi: 10.1016/j.scitotenv.2007.09.004. PubMed DOI
Brix K.V., DeForest D.K., Adams W.J. The sensitivity of aquatic insects to divalent metals: A comparative analysis of laboratory and field data. Sci. Total Environ. 2011;409:4187–4197. doi: 10.1016/j.scitotenv.2011.06.061. PubMed DOI
DeBruyn A.M., Rasmussen J.B. Quantifying assimilation of sewage-derived organic matter by riverine benthos. Ecol. Appl. 2002;12:511–520. doi: 10.1890/1051-0761(2002)012[0511:QAOSDO]2.0.CO;2. DOI
Zhang X.Y., Yu T., Li X., Yao J.Q., Liu W.G., Chang S.L., Chen Y.G. The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Crit. Rev. Environ. Sci. Technol. 2019;49:1425–1475. doi: 10.1080/10643389.2019.1579619. DOI
Franco A.A., Arellano J.M., Albendin G., Rodriguez-Barroso R., Zahedi S., Quiroga M., Coello M.D. Mapping microplastics in Cadiz (Spain): Occurrence of microplastics in municipal and industrial wastewaters. J. Water Process Eng. 2020;38:101596. doi: 10.1016/j.jwpe.2020.101596. DOI
Gani K.M., Tyagi V.K., Kazmi A.A. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: A review. Environ. Sci. Pollut. Res. 2017;24:17267–17284. doi: 10.1007/s11356-017-9182-3. PubMed DOI
Matheri A.N., Eloko N.S., Ntuli F., Ngila J.C. Influence of pyrolyzed sludge use as an adsorbent in removal of selected trace metals from wastewater treatment. Case Stud. Chem. Environ. Eng. 2020;2:100018. doi: 10.1016/j.cscee.2020.100018. DOI
Soares A. Wastewater treatment in 2050: Challenges ahead and future vision in a European context. Environ. Sci. Ecotechnol. 2020;2:100030. doi: 10.1016/j.ese.2020.100030. PubMed DOI PMC
Fedorova G., Grabic R., Grabicova K., Turek J., Van Nguyen T., Randak T., Brooks B.W., Zlabek V. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. J. Hazard. Mater. 2022;421:126712. doi: 10.1016/j.jhazmat.2021.126712. PubMed DOI
Grabicova K., Grabic R., Blaha M., Kumar V., Cerveny D., Fedorova G., Randak T. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res. 2015;72:145–153. doi: 10.1016/j.watres.2014.09.018. PubMed DOI
Suchowska-Kisielewicz M., Nowogonski I. Influence of storms on the emission of pollutants from sewage into waters. Sci. Rep. 2021;11:18788. doi: 10.1038/s41598-021-97536-5. PubMed DOI PMC
Covich A.P., Palmer M.A., Crowl T.A. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience. 1999;49:119–127. doi: 10.2307/1313537. DOI
Beneš F., Horecký J., Senoo T., Kamasová L., Lamačová A., Tátosová J., Hardekopf D.W., Stuchlík E. Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream. Biologia. 2017;72:1049–1058. doi: 10.1515/biolog-2017-0121. DOI
Fišer D., Muška M., Vlach P., Dort H., Ťuláková A., Blabolil P., Vašek M., Kočvara L. Fish communities of the Brdy Protected Landscape Area, current threats and management suggestions. Bohemia Cent. 2018;34:231–272.
Ter Braak C., Šmilauer P. Windows Release. Biometris, Plant Research International; Wageningen, The Netherlands: Germany University & Research; Berlin, Germany: Petr Šmilauer; České Budějovice, Czech Republic: 2012–2019. Version 5.12; Software for Mutivariate Data Exploration, Testing, and Summarization.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Graf W., Murphy J., Dahl J., Zamora-Munoz C., López-Rodríguez M.J. Trichoptera. In: Schmidt-Kloiber A., Hering D., editors. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 1. Pensoft Publishing; Sofia, Bulgaria: 2008. pp. 1–388.
Buffagni A., Cazzola M., López-Rodríguez M.J., Alba-Tercedor J., Armanini D.G. Ephemeroptera. In: Schmidt-Kloiber A., Hering D., editors. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 3. Pensoft Publishing; Sofia, Bulgaria: 2009. pp. 1–254.
Graf W., Lorenz A.W., Tierno de Figueroa J.M., Lücke S., López-Rodríguez M.J., Davies C. Plecoptera. In: Schmidt-Kloiber A., Hering D., editors. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 2. Pensoft Publishing; Sofia, Bulgaria: 2009. pp. 1–262.
Waringer J., Graf W. Atlas of Central European Trichoptera Larvae/Atlas der Mitteleuropäischen Köcherfliegenlarven. Erik Mauch Verlag; Dinkelscherben, Germany: 2011. pp. 1–470.
Burdon F.J., Munz N.A., Reyes M., Focks A., Joss A., Rasanen K., Altermatt F., Eggen R.I.L., Stamm C. Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Sci. Total Environ. 2019;659:1256–1265. doi: 10.1016/j.scitotenv.2018.12.372. PubMed DOI
Haidekker A., Hering D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquat. Ecol. 2008;42:463–481. doi: 10.1007/s10452-007-9097-z. DOI
Moore R.D., Spittlehouse D., Story A. Riparian Microclimate and Stream Temperature Response to Forest Harvesting: A Review. J. Am. Water Resour. Assoc. 2005;41:813–834. doi: 10.1111/j.1752-1688.2005.tb04465.x. DOI
Marten M. Interspecific variation in temperature dependence of egg development of five congeneric stonefly species (Protonemura Kempny, 1898, Nemouridae, Plecoptera) Hydrobiologia. 1990;199:157–172. doi: 10.1007/BF00005607. DOI
Humpesch U., Elliott J. Effect of temperature on the hatching time of eggs of three Rhithrogena spp. (Ephemeroptera) from Austrian streams and an English stream and river. J. Anim. Ecol. 1980;49:643–661. doi: 10.2307/4269. DOI
Kiffney P.M., Clements W.H. Effects of Heavy-Metals on a Macroinvertebrate Assemblage from a Rocky-Mountain Stream in Experimental Microcosms. J. N. Am. Benthol. Soc. 1994;13:511–523. doi: 10.2307/1467847. DOI
Wesner J.S., Kraus J.M., Schmidt T.S., Walters D.M., Clements W.H. Metamorphosis enhances the effects of metal exposure on the mayfly. Environ. Sci. Technol. 2014;48:10415–10422. doi: 10.1021/es501914y. PubMed DOI
Schmidt T.S., Kraus J.M., Walters D.M., Wanty R.B. Emergence flux declines disproportionately to larval density along a stream metals gradient. Environ. Sci. Technol. 2013;47:8784–8792. doi: 10.1021/es3051857. PubMed DOI
Bojková J., Komprdova K., Soldán T., Zahrádková S. Species loss of stoneflies (Plecoptera) in the Czech Republic during the 20th century. Freshw. Biol. 2012;57:2550–2567. doi: 10.1111/fwb.12027. DOI
Master L.L., Stein B.A., Kutner G.A., Hammerson G.A.K. Vanishing assets, conservation status of US species. In: Stein B.A., Kutner L.S., Adams J.S., editors. Precious Heritage, the Status of Biodiversity in the United States. The Nature Conservancy & Association for Biodiversity Information. Oxford University Press; Oxford, UK: 2000. pp. 93–118.
Hardekopf D.W., Horecky J., Kopacek J., Stuchlik E. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic) Hydrol. Earth Syst. Sci. 2008;12:479–490. doi: 10.5194/hess-12-479-2008. DOI
Vuori K.-M. Direct and indirect effects of iron on river ecosystems; Proceedings of the Annales Zoologici Fennici; Helsinki, Finland. 1 November 1995; pp. 317–329.
Dangles O. Functional plasticity of benthic macroinvertebrates: Implications for trophic dynamics in acid streams. Can. J. Fish. Aquat. Sci. 2002;59:1563–1573. doi: 10.1139/f02-122. DOI
Malaj E., Grote M., Schafer R.B., Brack W., von der Ohe P.C. Physiological sensitivity of freshwater macroinvertebrates to heavy metals. Environ. Toxicol. Chem. 2012;31:1754–1764. doi: 10.1002/etc.1868. PubMed DOI
Gattolliat J.L., Vincon G., Wyler S., Pawlowski J., Sartori M. Toward a comprehensive COI DNA barcode library for Swiss Stoneflies (Insecta: Plecoptera) with special emphasis on the genus Leuctra. Zoosymposia. 2016;11:135–155. doi: 10.11646/zoosymposia.11.1.15. DOI
Skála I., Lapšanská N., Špaček J. Macrozoobenthos of brooks in the Brdy Highlands Protected Landscape Area (Czech Republic) Bohemia Cent. 2019;35:291–358.
Roux C., Tachet H., Bournaud M., Cellot B. Stream continuum and metabolic rate in the larvae of five species of Hydropsyche (Trichoptera) Ecography. 1992;15:70–76. doi: 10.1111/j.1600-0587.1992.tb00010.x. DOI
Liess M., Von Der Ohe P.C. Analyzing effects of pesticides on invertebrate communities in streams. Environ. Toxicol. Chem. 2005;24:954–965. doi: 10.1897/03-652.1. PubMed DOI
Aspin T.W.H., Hart K., Khamis K., Milner A.M., O’Callaghan M.J., Trimmer M., Wang Z.N., Williams G.M.D., Woodward G., Ledger M.E. Drought intensification alters the composition, body size, and trophic structure of invertebrate assemblages in a stream mesocosm experiment. Freshw. Biol. 2019;64:750–760. doi: 10.1111/fwb.13259. DOI
Pitsch T. Contribution to larval taxonomy, ecology and distribution of the central European species of the genus Philopotamus (Trichoptera: Philopotamidae); Proceedings of the Fifth International Symposium on Trichoptera; Lyon, France. 21–26 July 1986; pp. 331–335. DOI
Edington J. Habitat preferences in net-spinning caddis larvae with special reference to the influence of water velocity. J. Anim. Ecol. 1968;37:675–692. doi: 10.2307/3081. DOI
Reiso S., Brittain J.E. Life cycle, diet and habitat of Polycentropus flavomaculatus, Plectrocnemia conspersa and Rhyacophila nubila (Trichoptera) in Øvre Heimdalen, Jotunheimen Mountains, Norway. Nor. J. Entomol. 2000;47:113–124.
Stehle S., Schulz R. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Acad. Sci. USA. 2015;112:5750–5755. doi: 10.1073/pnas.1500232112. PubMed DOI PMC
Let M., Spacek J., Ferencik M., Kouba A., Blaha M. Insecticides and Drought as a Fatal Combination for a Stream Macroinvertebrate Assemblage in a Catchment Area Exploited by Large-Scale Agriculture. Water. 2021;13:1352. doi: 10.3390/w13101352. DOI
Di Veroli A., Santoro F., Pallottini M., Selvaggi R., Scardazza F., Cappelletti D., Goretti E. Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere. 2014;112:9–17. doi: 10.1016/j.chemosphere.2014.03.053. PubMed DOI
Ratia H., Vuori K.M., Oikari A. Caddis larvae (Trichoptera, Hydropsychidae) indicate delaying recovery of a watercourse polluted by pulp and paper industry. Ecol. Indic. 2012;15:217–226. doi: 10.1016/j.ecolind.2011.09.015. DOI
Buntha P., Traichaiyaporn S., Thapanya D. Food Source for Hydropsychid Larvae during an Algae Bloom in Nan River, Nan Province, Thailand (Trichoptera: Hydropsychidae) Zoosymposia. 2020;18:9–16. doi: 10.11646/zoosymposia.18.1.4. DOI
Otto C. Prey size and predation as factors governing the distribution of lotic polycentropodid caddisfly larvae. Oikos. 1985;44:439–447. doi: 10.2307/3565785. DOI
Englund G., Evander D. Interactions between sculpins, net-spinning caddis larvae and midge larvae. Oikos. 1999;85:117–126. doi: 10.2307/3546797. DOI
Nakano D., Yamamoto M., Okino T. Ecosystem engineering by larvae of net-spinning stream caddisflies creates a habitat on the upper surface of stones for mayfly nymphs with a low resistance to flows. Freshw. Biol. 2005;50:1492–1498. doi: 10.1111/j.1365-2427.2005.01421.x. DOI
Glime J.M. Bryophyte Ecology, Chapter 11—Aquatic Insects. [(accessed on 27 March 2022)]. Available online: http://digitalcommons.mtu.edu/bryophyte-ecology2.
Krno I. Longitudinal changes in the structure of macrozoobenthos and its microdistribution in natural and moderately eutrophicated waters of the River Rajcianka (Strázovské vrchy) Acta Fac. Rerum Nat. Univ. Comen. Zool. 1990;33:31–48.
McGill B.J., Enquist B.J., Weiher E., Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI
Boulton A.J., Peterson C.G., Grimm N.B., Fisher S.G. Stability of an Aquatic Macroinvertebrate Community in a Multiyear Hydrologic Disturbance Regime. Ecology. 1992;73:2192–2207. doi: 10.2307/1941467. DOI
Lima M., Firmino V.C., de Paiva C.K.S., Juen L., Brasil L.S. Land use changes disrupt streams and affect the functional feeding groups of aquatic insects in the Amazon. J. Insect Conserv. 2022;26:137–148. doi: 10.1007/s10841-022-00375-6. DOI
Grabic R., Fick J., Lindberg R.H., Fedorova G., Tysklind M. Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta. 2012;100:183–195. doi: 10.1016/j.talanta.2012.08.032. PubMed DOI
Lindberg R.H., Ostman M., Olofsson U., Grabic R., Fick J. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Res. 2014;58:221–229. doi: 10.1016/j.watres.2014.03.076. PubMed DOI
Giddings E.M., Hornberger M.I., Hadley H.K. Utah. Science for a Changing World; Salt Lake City, UT, USA: 2001. Trace-metal concentrations in sediment and water and health of aquatic macroinvertebrate communities of streams near Park City, Summit County, Utah; pp. 9–10. DOI