Production of New Microbially Conjugated Bile Acids by Human Gut Microbiota
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35625615
PubMed Central
PMC9139144
DOI
10.3390/biom12050687
PII: biom12050687
Knihovny.cz E-zdroje
- Klíčová slova
- MCBAs, bile acids, gut microbiota, metabolomics,
- MeSH
- estery MeSH
- kyselina chenodeoxycholová MeSH
- lidé MeSH
- střevní mikroflóra * MeSH
- tandemová hmotnostní spektrometrie MeSH
- žlučové kyseliny a soli MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estery MeSH
- kyselina chenodeoxycholová MeSH
- žlučové kyseliny a soli MeSH
Gut microbes have been recognized to convert human bile acids by deconjugation, dehydroxylation, dehydrogenation, and epimerization of the cholesterol core, but the ability to re-conjugate them with amino acids as an additional conversion has been recently described. These new bile acids are known as microbially conjugated bile acids (MCBAs). The aim of this study was to evaluate the MCBAs diversity produced by the gut microbiota through a metabolomics approach. In this study, fresh fecal samples from healthy donors were evaluated to explore the re-conjugation of chenodeoxycholic and 3-oxo-chenodeoxycholic acids by the human gut microbiota. No significant differences were found between the conversion trend of both BAs incubations. The in vitro results showed a clear trend to first accumulate the epimer isoursochenodeoxycholic acid and the dehydroxylated lithocholic acid derivatives in samples incubated with chenodeoxycholic and 3-oxo-chenodeoxycholic acid. They also showed a strong trend for the production of microbially conjugated dehydroxylated bile acids instead of chenodeoxycholic backbone conjugates. Different molecules and isomers of MCBAs were identified, and the new ones, valolithocholate ester and leucolithocholate ester, were identified and confirmed by MS/MS. These results document the gut microbiota's capability to produce esters of MCBAs on hydroxyls of the sterol backbone in addition to amides at the C24 acyl site. This study opens a new perspective to study the BAs diversity produced by the human gut microbiota.
Zobrazit více v PubMed
Chiang J.Y.L. Regulation of bile acid synthesis: Pathways, nuclear receptors, and mechanisms. J. Hepatol. 2004;40:539–551. doi: 10.1016/j.jhep.2003.11.006. PubMed DOI
Monte M.J., Marin J.J.G., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. WJG. 2009;15:804–816. doi: 10.3748/wjg.15.804. PubMed DOI PMC
Bjorkhem I., Araya Z., Rudling M., Angelin B., Einarsson C., Wikvall K. Differences in the regulation of the classical and the alternative pathway for bile acid synthesis in human liver—No coordinate regulation of CYP7A1 and CYP27A1. J. Biol. Chem. 2002;277:26804–26807. doi: 10.1074/jbc.M202343200. PubMed DOI
Vallim T.Q.D., Tarling E.J., Edwards P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–669. doi: 10.1016/j.cmet.2013.03.013. PubMed DOI PMC
Chiang J.Y.L. Bile acid metabolism and signaling. Compr. Physiol. 2013;3:1191–1212. doi: 10.1002/cphy.c120023. PubMed DOI PMC
Joyce S.A., Gahan C.G.M. Bile acid modifications at the microbe-host interface: Potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 2016;7:313–333. doi: 10.1146/annurev-food-041715-033159. PubMed DOI
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;3:14–24. doi: 10.3390/pathogens3010014. PubMed DOI PMC
Long S.L., Gahan C.G.M., Joyce S.A. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017;56:54–65. doi: 10.1016/j.mam.2017.06.002. PubMed DOI
Franco P., Porru E., Fiori J., Gioiello A., Cerra B., Roda G., Caliceti C., Simoni P., Roda A. Identification and quantification of oxo-bile acids in human faeces with liquid chromatography-mass spectrometry: A potent tool for human gut acidic sterolbiome studies. J. Chromatogr. A. 2019;1585:70–81. doi: 10.1016/j.chroma.2018.11.038. PubMed DOI
Guzior D.V., Quinn R.A. Review: Microbial transformations of human bile acids. Microbiome. 2021;9:140. doi: 10.1186/s40168-021-01101-1. PubMed DOI PMC
Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI
Oduyebo I., Camilleri M. Bile acid disease: The emerging epidemic. Curr. Opin. Gastroen. 2017;33:189–195. doi: 10.1097/MOG.0000000000000344. PubMed DOI PMC
Lajczak-McGinley N.K., Porru E., Fallon C.M., Smyth J., Curley C., McCarron P.A., Tambuwala M.M., Roda A., Keely S.J. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol. Rep. 2020;8:e14456. doi: 10.14814/phy2.14456. PubMed DOI PMC
Li P., Killinger B.A., Ensink E., Beddows I., Yilmaz A., Lubben N., Lamp J., Schilthuis M., Vega I.E., Woltjer R., et al. Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease. Metabolites. 2021;11:29. doi: 10.3390/metabo11010029. PubMed DOI PMC
García C.J., García-Villalba R., Moreno D.A., Tomás-Barberán F.A. Gut microbiota interactions with dietary terpenoids and nitrogen-containing phytochemicals. Compr. Gut Microbiota. 2022:124–148. doi: 10.1016/B978-0-12-819265-8.00081-4. DOI
Sagar N.M., Duboc H., Kay G.L., Alam M.T., Wicaksono A.N., Covington J.A., Quince C., Kokkorou M., Svolos V., Palmieri L.J., et al. The pathophysiology of bile acid diarrhoea: Differences in the colonic microbiome, metabolome and bile acids. Sci. Rep. 2020;10:20436. doi: 10.1038/s41598-020-77374-7. PubMed DOI PMC
Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC
Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016;22:2219–2241. doi: 10.3748/wjg.v22.i7.2219. PubMed DOI PMC
Reiter S., Dunkel A., Metwaly A., Panes J., Salas A., Haller D., Hofmann T. Development of a highly sensitive ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry quantitation method for fecal Bile acids and application on Crohn’s disease studies. J. Agr. Food Chem. 2021;69:5238–5251. doi: 10.1021/acs.jafc.1c00769. PubMed DOI
Garcia C.J., Beltran D., Tomas-Barberan F.A. Human gut microbiota metabolism of dietary sesquiterpene lactones: Untargeted metabolomics study of lactucopicrin and lactucin conversion in vitro and in vivo. Mol. Nutr. Food Res. 2020;64:2000619. doi: 10.1002/mnfr.202000619. PubMed DOI
García-Villalba R., Beltrán D., Espín J.C., Selma M.V., Tomás-Barberán F.A. Time course production of urolithins from ellagic acid by human gut microbiota. J. Agric. Food Chem. 2013;61:8797–8806. doi: 10.1021/jf402498b. PubMed DOI
Van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:142. doi: 10.1186/1471-2164-7-142. PubMed DOI PMC
Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105. PubMed DOI PMC
Joyce S.A., Gahan C.G. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig. Dis. 2017;35:169–177. doi: 10.1159/000450907. PubMed DOI
Ridlon J.M., Hylemon P.B. Identification and characterization of two bile acid coenzyme a transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 2012;53:66–76. doi: 10.1194/jlr.M020313. PubMed DOI PMC
Hirano S., Masuda N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J. Lipid Res. 1981;22:1060–1068. doi: 10.1016/S0022-2275(20)40663-7. PubMed DOI
Quinn R.A., Melnik A.V., Vrbanac A., Fu T., Patras K.A., Christy M.P., Bodai Z., Belda-Ferre P., Tripathi A., Chung L.K., et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. doi: 10.1038/s41586-020-2047-9. PubMed DOI PMC
Molinero N., Ruiz L., Sánchez B., Margolles A., Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: Implications on host physiology. Front. Physiol. 2019;10:185. doi: 10.3389/fphys.2019.00185. PubMed DOI PMC
Hofmann A.F. The enterohepatic circulation of bile acids in mammals: Form and functions. Front. Biosci. 2009;14:2584–2598. doi: 10.2741/3399. PubMed DOI
Perez M.J., Briz O. Bile-acid-induced cell injury and protection. World J. Gastroenterol. WJG. 2009;15:1677–1689. doi: 10.3748/wjg.15.1677. PubMed DOI PMC
Kelsey M.I., Molina J.E., Shingkwan S.H., Kinkai H. The identification of microbial metabolites of sulfolithocholic acid. J. Lipid Res. 1980;21:751–759. doi: 10.1016/S0022-2275(20)34802-1. PubMed DOI
Benson G.M., Haskins N.J., Eckers C., Moore P.J., Reid D.G., Mitchell R.C., Waghmare S., Suckling K.E. Polydeoxycholate in human and hamster feces—A major product of cholate metabolism. J. Lipid Res. 1993;34:2121–2134. doi: 10.1016/S0022-2275(20)35353-0. PubMed DOI
Ridlon J.M., Harris S.C., Bhowmik S., Kang D.J., Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi: 10.1080/19490976.2015.1127483. PubMed DOI PMC
Armstrong M.J., Carey M.C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 1982;23:70–80. doi: 10.1016/S0022-2275(20)38175-X. PubMed DOI
Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI
Staley C., Weingarden A.R., Khoruts A., Sadowsky M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biot. 2017;101:47–64. doi: 10.1007/s00253-016-8006-6. PubMed DOI PMC
Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008;7:678–693. doi: 10.1038/nrd2619. PubMed DOI
Huang F., Zheng X., Ma X., Jiang R., Zhou W., Zhou S., Zhang Y., Lei S., Wang S., Kuang J., et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota bile acid metabolism. Nat. Commun. 2009;10:17. doi: 10.1038/s41467-019-12896-x. PubMed DOI PMC
Van Faassen A., Tangerman A., Bueno-de-Mesquita B.H. Serum bile acids and risk factors for colorectal cancer. Br. J. Cancer. 2004;90:632–634. doi: 10.1038/sj.bjc.6601608. PubMed DOI PMC
Chow M.D., Lee Y.H., Guo G.L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol. Aspects Med. 2017;56:34–44. doi: 10.1016/j.mam.2017.04.004. PubMed DOI PMC
Kessoku T., Kobayashi T., Imajo K., Honda Y., Ogawa Y., Higurashi T., Kato S., Yoneda M., Oikawa Y., Tanaka Y., et al. Increased levels of bile acid in feces plays an important role in pathophysiology of non-alcoholic steatohepatitis. J. Hepatol. 2019;70:e534. doi: 10.1016/S0618-8278(19)31055-2. DOI
Ferrell J.M., Chiang J.Y.L. Understanding bile acid signaling in diabetes: From pathophysiology to therapeutic targets. Diabetes Metab. 2019;43:257–272. doi: 10.4093/dmj.2019.0043. PubMed DOI PMC
Zhan K., Zheng H., Li J., Wu H., Qin S., Luo L., Huang S. Gut Microbiota-bile acid crosstalk in diarrhea-irritable bowel syndrome. Biomed. Res. Int. 2020;2020:20203828249. doi: 10.1155/2020/3828249. PubMed DOI PMC
Ridlon J.M., Wolf P.G., Gaskins H.R. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215. doi: 10.1080/19490976.2016.1150414. PubMed DOI PMC
Zhang X., Yang Z., Shi Z., Zhu Z., Li C., Du Z., Zhang Y., Wang Z., Jiao Z., Tian X., et al. Analysis of bile acid profile in plasma to differentiate cholangiocarcinoma from benign biliary diseases and healthy controls. J. Steroid Biochem. Mol. Biol. 2021;205:105775. doi: 10.1016/j.jsbmb.2020.105775. PubMed DOI
Perino A., Demagny H., Velazquez-Villegas L.A., Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol. Rev. 2021;101:683–731. doi: 10.1152/physrev.00049.2019. PubMed DOI