Production of New Microbially Conjugated Bile Acids by Human Gut Microbiota

. 2022 May 11 ; 12 (5) : . [epub] 20220511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35625615

Gut microbes have been recognized to convert human bile acids by deconjugation, dehydroxylation, dehydrogenation, and epimerization of the cholesterol core, but the ability to re-conjugate them with amino acids as an additional conversion has been recently described. These new bile acids are known as microbially conjugated bile acids (MCBAs). The aim of this study was to evaluate the MCBAs diversity produced by the gut microbiota through a metabolomics approach. In this study, fresh fecal samples from healthy donors were evaluated to explore the re-conjugation of chenodeoxycholic and 3-oxo-chenodeoxycholic acids by the human gut microbiota. No significant differences were found between the conversion trend of both BAs incubations. The in vitro results showed a clear trend to first accumulate the epimer isoursochenodeoxycholic acid and the dehydroxylated lithocholic acid derivatives in samples incubated with chenodeoxycholic and 3-oxo-chenodeoxycholic acid. They also showed a strong trend for the production of microbially conjugated dehydroxylated bile acids instead of chenodeoxycholic backbone conjugates. Different molecules and isomers of MCBAs were identified, and the new ones, valolithocholate ester and leucolithocholate ester, were identified and confirmed by MS/MS. These results document the gut microbiota's capability to produce esters of MCBAs on hydroxyls of the sterol backbone in addition to amides at the C24 acyl site. This study opens a new perspective to study the BAs diversity produced by the human gut microbiota.

Zobrazit více v PubMed

Chiang J.Y.L. Regulation of bile acid synthesis: Pathways, nuclear receptors, and mechanisms. J. Hepatol. 2004;40:539–551. doi: 10.1016/j.jhep.2003.11.006. PubMed DOI

Monte M.J., Marin J.J.G., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. WJG. 2009;15:804–816. doi: 10.3748/wjg.15.804. PubMed DOI PMC

Bjorkhem I., Araya Z., Rudling M., Angelin B., Einarsson C., Wikvall K. Differences in the regulation of the classical and the alternative pathway for bile acid synthesis in human liver—No coordinate regulation of CYP7A1 and CYP27A1. J. Biol. Chem. 2002;277:26804–26807. doi: 10.1074/jbc.M202343200. PubMed DOI

Vallim T.Q.D., Tarling E.J., Edwards P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–669. doi: 10.1016/j.cmet.2013.03.013. PubMed DOI PMC

Chiang J.Y.L. Bile acid metabolism and signaling. Compr. Physiol. 2013;3:1191–1212. doi: 10.1002/cphy.c120023. PubMed DOI PMC

Joyce S.A., Gahan C.G.M. Bile acid modifications at the microbe-host interface: Potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 2016;7:313–333. doi: 10.1146/annurev-food-041715-033159. PubMed DOI

Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;3:14–24. doi: 10.3390/pathogens3010014. PubMed DOI PMC

Long S.L., Gahan C.G.M., Joyce S.A. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017;56:54–65. doi: 10.1016/j.mam.2017.06.002. PubMed DOI

Franco P., Porru E., Fiori J., Gioiello A., Cerra B., Roda G., Caliceti C., Simoni P., Roda A. Identification and quantification of oxo-bile acids in human faeces with liquid chromatography-mass spectrometry: A potent tool for human gut acidic sterolbiome studies. J. Chromatogr. A. 2019;1585:70–81. doi: 10.1016/j.chroma.2018.11.038. PubMed DOI

Guzior D.V., Quinn R.A. Review: Microbial transformations of human bile acids. Microbiome. 2021;9:140. doi: 10.1186/s40168-021-01101-1. PubMed DOI PMC

Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI

Oduyebo I., Camilleri M. Bile acid disease: The emerging epidemic. Curr. Opin. Gastroen. 2017;33:189–195. doi: 10.1097/MOG.0000000000000344. PubMed DOI PMC

Lajczak-McGinley N.K., Porru E., Fallon C.M., Smyth J., Curley C., McCarron P.A., Tambuwala M.M., Roda A., Keely S.J. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol. Rep. 2020;8:e14456. doi: 10.14814/phy2.14456. PubMed DOI PMC

Li P., Killinger B.A., Ensink E., Beddows I., Yilmaz A., Lubben N., Lamp J., Schilthuis M., Vega I.E., Woltjer R., et al. Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease. Metabolites. 2021;11:29. doi: 10.3390/metabo11010029. PubMed DOI PMC

García C.J., García-Villalba R., Moreno D.A., Tomás-Barberán F.A. Gut microbiota interactions with dietary terpenoids and nitrogen-containing phytochemicals. Compr. Gut Microbiota. 2022:124–148. doi: 10.1016/B978-0-12-819265-8.00081-4. DOI

Sagar N.M., Duboc H., Kay G.L., Alam M.T., Wicaksono A.N., Covington J.A., Quince C., Kokkorou M., Svolos V., Palmieri L.J., et al. The pathophysiology of bile acid diarrhoea: Differences in the colonic microbiome, metabolome and bile acids. Sci. Rep. 2020;10:20436. doi: 10.1038/s41598-020-77374-7. PubMed DOI PMC

Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC

Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016;22:2219–2241. doi: 10.3748/wjg.v22.i7.2219. PubMed DOI PMC

Reiter S., Dunkel A., Metwaly A., Panes J., Salas A., Haller D., Hofmann T. Development of a highly sensitive ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry quantitation method for fecal Bile acids and application on Crohn’s disease studies. J. Agr. Food Chem. 2021;69:5238–5251. doi: 10.1021/acs.jafc.1c00769. PubMed DOI

Garcia C.J., Beltran D., Tomas-Barberan F.A. Human gut microbiota metabolism of dietary sesquiterpene lactones: Untargeted metabolomics study of lactucopicrin and lactucin conversion in vitro and in vivo. Mol. Nutr. Food Res. 2020;64:2000619. doi: 10.1002/mnfr.202000619. PubMed DOI

García-Villalba R., Beltrán D., Espín J.C., Selma M.V., Tomás-Barberán F.A. Time course production of urolithins from ellagic acid by human gut microbiota. J. Agric. Food Chem. 2013;61:8797–8806. doi: 10.1021/jf402498b. PubMed DOI

Van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:142. doi: 10.1186/1471-2164-7-142. PubMed DOI PMC

Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105. PubMed DOI PMC

Joyce S.A., Gahan C.G. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig. Dis. 2017;35:169–177. doi: 10.1159/000450907. PubMed DOI

Ridlon J.M., Hylemon P.B. Identification and characterization of two bile acid coenzyme a transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 2012;53:66–76. doi: 10.1194/jlr.M020313. PubMed DOI PMC

Hirano S., Masuda N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J. Lipid Res. 1981;22:1060–1068. doi: 10.1016/S0022-2275(20)40663-7. PubMed DOI

Quinn R.A., Melnik A.V., Vrbanac A., Fu T., Patras K.A., Christy M.P., Bodai Z., Belda-Ferre P., Tripathi A., Chung L.K., et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. doi: 10.1038/s41586-020-2047-9. PubMed DOI PMC

Molinero N., Ruiz L., Sánchez B., Margolles A., Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: Implications on host physiology. Front. Physiol. 2019;10:185. doi: 10.3389/fphys.2019.00185. PubMed DOI PMC

Hofmann A.F. The enterohepatic circulation of bile acids in mammals: Form and functions. Front. Biosci. 2009;14:2584–2598. doi: 10.2741/3399. PubMed DOI

Perez M.J., Briz O. Bile-acid-induced cell injury and protection. World J. Gastroenterol. WJG. 2009;15:1677–1689. doi: 10.3748/wjg.15.1677. PubMed DOI PMC

Kelsey M.I., Molina J.E., Shingkwan S.H., Kinkai H. The identification of microbial metabolites of sulfolithocholic acid. J. Lipid Res. 1980;21:751–759. doi: 10.1016/S0022-2275(20)34802-1. PubMed DOI

Benson G.M., Haskins N.J., Eckers C., Moore P.J., Reid D.G., Mitchell R.C., Waghmare S., Suckling K.E. Polydeoxycholate in human and hamster feces—A major product of cholate metabolism. J. Lipid Res. 1993;34:2121–2134. doi: 10.1016/S0022-2275(20)35353-0. PubMed DOI

Ridlon J.M., Harris S.C., Bhowmik S., Kang D.J., Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi: 10.1080/19490976.2015.1127483. PubMed DOI PMC

Armstrong M.J., Carey M.C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 1982;23:70–80. doi: 10.1016/S0022-2275(20)38175-X. PubMed DOI

Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI

Staley C., Weingarden A.R., Khoruts A., Sadowsky M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biot. 2017;101:47–64. doi: 10.1007/s00253-016-8006-6. PubMed DOI PMC

Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008;7:678–693. doi: 10.1038/nrd2619. PubMed DOI

Huang F., Zheng X., Ma X., Jiang R., Zhou W., Zhou S., Zhang Y., Lei S., Wang S., Kuang J., et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota bile acid metabolism. Nat. Commun. 2009;10:17. doi: 10.1038/s41467-019-12896-x. PubMed DOI PMC

Van Faassen A., Tangerman A., Bueno-de-Mesquita B.H. Serum bile acids and risk factors for colorectal cancer. Br. J. Cancer. 2004;90:632–634. doi: 10.1038/sj.bjc.6601608. PubMed DOI PMC

Chow M.D., Lee Y.H., Guo G.L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol. Aspects Med. 2017;56:34–44. doi: 10.1016/j.mam.2017.04.004. PubMed DOI PMC

Kessoku T., Kobayashi T., Imajo K., Honda Y., Ogawa Y., Higurashi T., Kato S., Yoneda M., Oikawa Y., Tanaka Y., et al. Increased levels of bile acid in feces plays an important role in pathophysiology of non-alcoholic steatohepatitis. J. Hepatol. 2019;70:e534. doi: 10.1016/S0618-8278(19)31055-2. DOI

Ferrell J.M., Chiang J.Y.L. Understanding bile acid signaling in diabetes: From pathophysiology to therapeutic targets. Diabetes Metab. 2019;43:257–272. doi: 10.4093/dmj.2019.0043. PubMed DOI PMC

Zhan K., Zheng H., Li J., Wu H., Qin S., Luo L., Huang S. Gut Microbiota-bile acid crosstalk in diarrhea-irritable bowel syndrome. Biomed. Res. Int. 2020;2020:20203828249. doi: 10.1155/2020/3828249. PubMed DOI PMC

Ridlon J.M., Wolf P.G., Gaskins H.R. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215. doi: 10.1080/19490976.2016.1150414. PubMed DOI PMC

Zhang X., Yang Z., Shi Z., Zhu Z., Li C., Du Z., Zhang Y., Wang Z., Jiao Z., Tian X., et al. Analysis of bile acid profile in plasma to differentiate cholangiocarcinoma from benign biliary diseases and healthy controls. J. Steroid Biochem. Mol. Biol. 2021;205:105775. doi: 10.1016/j.jsbmb.2020.105775. PubMed DOI

Perino A., Demagny H., Velazquez-Villegas L.A., Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol. Rev. 2021;101:683–731. doi: 10.1152/physrev.00049.2019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...