Multiphoton Microscopy Reveals DAPK1-Dependent Extracellular Matrix Remodeling in a Chorioallantoic Membrane (CAM) Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 68378050
Czech Academy of Sciences
CZ.1.05/1.1.00/02.0109
Charles University
LM2018126
Ministry of Education, Youth and Sports of the Czech Republic
CA17118
European Cooperation in Science and Technology
PubMed
35625969
PubMed Central
PMC9139596
DOI
10.3390/cancers14102364
PII: cancers14102364
Knihovny.cz E-zdroje
- Klíčová slova
- ECM remodeling, MPM, collagen, colon cancer, uPAR,
- Publikační typ
- časopisecké články MeSH
Cancer cells facilitate tumor growth by creating favorable tumor micro-environments (TME), altering homeostasis and immune response in the extracellular matrix (ECM) of surrounding tissue. A potential factor that contributes to TME generation and ECM remodeling is the cytoskeleton-associated human death-associated protein kinase 1 (DAPK1). Increased tumor cell motility and de-adhesion (thus, promoting metastasis), as well as upregulated plasminogen-signaling, are shown when functionally analyzing the DAPK1 ko-related proteome. However, the systematic investigation of how tumor cells actively modulate the ECM at the tissue level is experimentally challenging since animal models do not allow direct experimental access while artificial in vitro scaffolds cannot simulate the entire complexity of tissue systems. Here, we used the chorioallantoic membrane (CAM) assay as a natural, collagen-rich tissue model in combination with all-optical experimental access by multiphoton microscopy (MPM) to study the ECM remodeling potential of colorectal tumor cells with and without DAPK1 in situ and even in vivo. This approach demonstrates the suitability of the CAM assay in combination with multiphoton microscopy for studying collagen remodeling during tumor growth. Our results indicate the high ECM remodeling potential of DAPK1 ko tumor cells at the tissue level and support our findings from proteomics.
Zobrazit více v PubMed
Dillekas H., Rogers M.S., Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8:5574–5576. doi: 10.1002/cam4.2474. PubMed DOI PMC
Seager R.J., Hajal C., Spill F., Kamm R.D., Zaman M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg. Sci. Phys. Oncol. 2017;3:034002. doi: 10.1088/2057-1739/aa7e86. PubMed DOI PMC
Poltavets V., Kochetkova M., Pitson S.M., Samuel M.S. The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Front. Oncol. 2018;8:431. doi: 10.3389/fonc.2018.00431. PubMed DOI PMC
Jablonska-Trypuc A., Matejczyk M., Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme. Inhib. Med. Chem. 2016;31:177–183. doi: 10.3109/14756366.2016.1161620. PubMed DOI
Ray A., Morford R.K., Ghaderi N., Odde D.J., Provenzano P.P. Dynamics of 3D carcinoma cell invasion into aligned collagen. Integr. Biol. 2018;10:100–112. doi: 10.1039/C7IB00152E. PubMed DOI PMC
Holle A.W., Young J.L., Spatz J.P. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv. Drug Deliv. Rev. 2016;97:270–279. doi: 10.1016/j.addr.2015.10.007. PubMed DOI
Schneider-Stock R., Ribatti D. The CAM Assay as an Alternative In Vivo Model for Drug Testing. Organotypic Models in Drug Development. Handb. Exp. Pharmacol. 2020;265:303–323. PubMed
Winter G., Koch A.B.F., Löffler J., Jelezko F., Lindén M., Li H., Abaei A., Zuo Z., Beer A.J., Rasche V. In vivo PET/MRI Imaging of the Chorioallantoic Membrane. Front. Phys. 2020;8:151. doi: 10.3389/fphy.2020.00151. DOI
Zipfel W.R., Williams R.M., Webb W.W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003;21:1368–1376. doi: 10.1038/nbt899. PubMed DOI
Stoletov K., Willetts L., Paproski R.J., Bond D.J., Raha S., Jovel J., Adam B., Robertson A.E., Wong F., Woolner E., et al. Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis. Nat. Commun. 2018;9:2343. doi: 10.1038/s41467-018-04743-2. PubMed DOI PMC
Shen B., Yan J., Wang S., Zhou F., Zhao Y., Hu R., Qu J., Liu L. Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system. Theranostics. 2020;10:1849–1860. doi: 10.7150/thno.40869. PubMed DOI PMC
Karimian-Jazi K., Munch P., Alexander A., Fischer M., Pfleiderer K., Piechutta M., Karreman M.A., Solecki G.M., Berghoff A.S., Friedrich M., et al. Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM) Theranostics. 2020;10:1873–1883. doi: 10.7150/thno.38659. PubMed DOI PMC
Schneidereit D., Bröllochs A., Ritter P., Kreiß L., Mokhtari Z., Beilhack A., Krönke G., Ackermann J.A., Faas M., Grüneboom A., et al. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Theranostics. 2021;11:2876–2891. doi: 10.7150/thno.51558. PubMed DOI PMC
Kakkad S.M., Solaiyappan M., O’Rourke B., Stasinopoulos I., Ackerstaff E., Raman V., Bhujwalla Z.M., Glunde K. Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia. 2010;12:608–617. doi: 10.1593/neo.10344. PubMed DOI PMC
Steinmann S., Kunze P., Hampel C., Eckstein M., Bertram Bramsen J., Muenzner J.K., Carlé B., Ndreshkjana B., Kemenes S., Gasparini P., et al. DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis. 2019;10:895. doi: 10.1038/s41419-019-2122-z. PubMed DOI PMC
Chen H.-Y., Lee Y.-R., Chen R.-H. The functions and regulations of DAPK in cancer metastasis. Apoptosis. 2014;19:364–370. doi: 10.1007/s10495-013-0923-6. PubMed DOI
Yuan W., Ji J., Shu Y., Chen J., Liu S., Wu L., Zhou Z., Liu Z., Tang Q., Zhang X., et al. Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer. J. Mol. Med. 2019;97:89–102. doi: 10.1007/s00109-018-1716-8. PubMed DOI
Remmele W. Recommendation for Uniform Definition of an Immunoreactive Score (IRS) for Immunohistochemical Estrogen Receptor Detection (ER-ICA) in Breast Cancer Tissue. Pathologe. 1987;8:138–140. PubMed
Preibisch S., Saalfeld S., Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25:1463–1465. doi: 10.1093/bioinformatics/btp184. PubMed DOI PMC
Goldberg I.G., Allan C., Burel J.-M., Creager D., Falconi A., Hochheiser H., Johnston J., Mellen J., Sorger P.K., Swedlow J.R. The Open Microscopy Environment (OME) Data Model and XML file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 2005;6:R47. doi: 10.1186/gb-2005-6-5-r47. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox T.R., Erler J.T. Molecular Pathways: Connecting Fibrosis and Solid Tumor Metastasis. Clin. Cancer Res. 2014;20:3637–3643. doi: 10.1158/1078-0432.CCR-13-1059. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Pomaznoy M., Ha B., Peters B. GOnet: A tool for interactive Gene Ontology analysis. BMC Bioinform. 2018;19:470. doi: 10.1186/s12859-018-2533-3. PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Zheng Y., Xia Y., Hawke D., Halle M., Tremblay M.L., Gao X., Zhou X.Z., Aldape K., Cobb M.H., Xie K., et al. FAK phosphorylation by ERK primes Ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol. Cell. 2009;35:11–25. doi: 10.1016/j.molcel.2009.06.013. PubMed DOI PMC
Zhang Y., Sime W., Juhas M., Sjolander A. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur. J. Cancer. 2013;49:3320–3334. doi: 10.1016/j.ejca.2013.06.005. PubMed DOI
Ichikawa T., Kita M., Matsui T.S., Nagasato A.I., Araki T., Chiang S.H., Sezaki T., Kimura Y., Ueda K., Deguchi S., et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J. Cell Sci. 2017;130:3517–3531. doi: 10.1242/jcs.200691. PubMed DOI PMC
Zeng P., Li H., Lu P.H., Zhou L.N., Tang M., Liu C.Y., Chen M.B. Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis. Sci. Rep. 2017;7:4223. doi: 10.1038/s41598-017-01061-3. PubMed DOI PMC
Martin T.A., Lane J., Harrison G.M., Jiang W.G. The expression of the Nectin complex in human breast cancer and the role of Nectin-3 in the control of tight junctions during metastasis. PLoS ONE. 2013;8:e82696. doi: 10.1371/journal.pone.0082696. PubMed DOI PMC
Brungs D., Chen J., Aghmesheh M., Vine K.L., Becker T.M., Carolan M.G., Ranson M. The urokinase plasminogen activation system in gastroesophageal cancer: A systematic review and meta-analysis. Oncotarget. 2017;8:23099. doi: 10.18632/oncotarget.15485. PubMed DOI PMC
Leibovitz A., Stinson J.C., McCombs W.B., 3rd, McCoy C.E., Mazur K.C., Mabry N.D. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976;36:4562–4569. PubMed
Han W., Chen S., Yuan W., Fan Q., Tian J., Wang X., Chen L., Zhang X., Wei W., Liu R., et al. Oriented collagen fibers direct tumor cell intravasation. Proc. Natl. Acad. Sci. USA. 2016;113:11208–11213. doi: 10.1073/pnas.1610347113. PubMed DOI PMC
Conklin M.W., Eickhoff J.C., Riching K.M., Pehlke C.A., Eliceiri K.W., Provenzano P.P., Friedl A., Keely P.J. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 2011;178:1221–1232. doi: 10.1016/j.ajpath.2010.11.076. PubMed DOI PMC
Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35:2871–2882. doi: 10.1007/s13277-013-1511-7. PubMed DOI PMC
Klingenberg M., Becker J., Eberth S., Kube D., Wilting J. The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma. BMC Cancer. 2014;14:339. doi: 10.1186/1471-2407-14-339. PubMed DOI PMC
Brabrand A., Kariuki I.I., Engstrom M.J., Haugen O.A., Dyrnes L.A., Asvold B.O., Lilledahl M.B., Bofin A.M. Alterations in collagen fibre patterns in breast cancer. A premise for tumour invasiveness? APMIS. 2015;123:1–8. doi: 10.1111/apm.12298. PubMed DOI
Benderska N., Schneider-Stock R. Transcription control of DAPK. Apoptosis. 2014;19:298–305. doi: 10.1007/s10495-013-0931-6. PubMed DOI
Guo H., Ling C., Ma Y.Y., Zhou L.X., Zhao L. Prognostic role of urokinase plasminogen activator receptor in gastric and colorectal cancer: A systematic review and meta-analysis. OncoTargets Ther. 2015;8:1503–1509. PubMed PMC