Detection of Unknown and Rare Pathogenic Variants in Antithrombin, Protein C and Protein S Deficiency Using High-Throughput Targeted Sequencing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35626216
PubMed Central
PMC9139221
DOI
10.3390/diagnostics12051060
PII: diagnostics12051060
Knihovny.cz E-zdroje
- Klíčová slova
- NGS, anticoagulant, antithrombin deficiency, high-throughput sequencing, mutation detection rate, protein C deficiency, protein S deficiency,
- Publikační typ
- časopisecké články MeSH
The deficiency of natural anticoagulants—antithrombin (AT), protein C (PC), and protein S (PS)—is a highly predisposing factor for thrombosis, which is still underdiagnosed at the genetic level. We aimed to establish and evaluate an optimal diagnostic approach based on a high-throughput sequencing platform suitable for testing a small number of genes. A fast, flexible, and efficient method involving automated amplicon library preparation and target sequencing on the Ion Torrent platform was optimized. The cohort consisted of a group of 31 unrelated patients selected for sequencing due to repeatedly low levels of one of the anticoagulant proteins (11 AT-deficient, 13 PC-deficient, and 7 PS-deficient patients). The overall mutation detection rate was 67.7%, highest in PC deficiency (76.9%), and six variants were newly detected—SERPINC1 c.398A > T (p.Gln133Leu), PROC c.450C > A (p.Tyr150Ter), c.715G > C (p.Gly239Arg) and c.866C > G (p.Pro289Arg), and PROS1 c.1468delA (p.Ile490fs) and c.1931T > A (p.Ile644Asn). Our data are consistent with those of previous studies, which mostly used time-consuming Sanger sequencing for genotyping, and the indication criteria for molecular genetic testing were adapted to this process in the past. Our promising results allow for a wider application of the described methodology in clinical practice, which will enable a suitable expansion of the group of indicated patients to include individuals with severe clinical findings of thrombosis at a young age. Moreover, this approach is flexible and applicable to other oligogenic panels.
Department of Hemato Oncology University Hospital Olomouc 77900 Olomouc Czech Republic
Department of Medical Genetics University Hospital Olomouc 77900 Olomouc Czech Republic
Zobrazit více v PubMed
Heit J.A. Epidemiology of venous thromboembolism. Nat. Rev. Cardiol. 2015;12:464–474. doi: 10.1038/nrcardio.2015.83. PubMed DOI PMC
Tagalakis V., Patenaude V., Kahn S.R., Suissa S. Incidence of and mortality from venous thromboembolism in a real-world population: The Q-VTE Study Cohort. Am. J. Med. 2013;126:832.e13–832.e21. doi: 10.1016/j.amjmed.2013.02.024. PubMed DOI
Prandoni P., Lensing A.W.A., Cogo A., Cuppini S., Villalta S., Carta M., Cattelan A.M., Polistena P., Bernardi E., Prins M.H. The long-term Clinical course of acute deep venous thrombosis. Ann. Intern. Med. 1996;125:1–7. doi: 10.7326/0003-4819-125-1-199607010-00001. PubMed DOI
Anderson F.A., Wheeler H.B., Goldberg R.J., Hosmer D.W., Patwardhan N.A., Jovanovic B., Forcier A., Dalen J.E. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism: The Worcester DVT Study. Arch. Intern. Med. 1991;151:933–938. doi: 10.1001/archinte.1991.00400050081016. PubMed DOI
Souto J.C., Almassy L., Borell M., Blanco-Vaca F., Mateo J., Soria J.M., Coll I., Felices R., Stone W., Fontcuberta J., et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: The GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am. J. Hum. Genet. 2000;67:1452–1459. doi: 10.1086/316903. PubMed DOI PMC
Stoneham S.M., Milne K.M., Nuttall E., Frew G.H., Sturrock B.R.H., Sivaloganathan H., Ladikou E.E., Drage S., Phillips B., Chevassut T.J.T., et al. Thrombotic risk in COVID-19: A case series and case–control study. Clin. Med. 2020;20:e76–e81. doi: 10.7861/clinmed.2020-0228. PubMed DOI PMC
Rees D.C., Cox M., Clegg M.B. World distribution of factor V Leiden. Lancet. 1995;346:1133–1134. doi: 10.1016/S0140-6736(95)91803-5. PubMed DOI
Dahlbäck B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood. 2008;112:19–27. doi: 10.1182/blood-2008-01-077909. PubMed DOI
Emmerich J., Rosendaal F.R., Cattaneo M., Margaglione M., De Stefano V., Cumming T., Arruda V., Hillarp A., Reny J.L. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism. Thromb. Haemost. 2001;86:809–816. PubMed
Wypasek E., Corral J., Alhenc-Gelas M., Sydor W., Iwaniec T., Celińska-Lowenhoff M., Potaczek D.P., Blecharczyk A., Zawilska K., Musiał J., et al. Genetic characterization of antithrombin, protein C, and protein S deficiencies in Polish patients. Pol. Arch. Int. Med. 2017;127:512–523. doi: 10.20452/pamw.4045. PubMed DOI
García de Frutos P., Fuentes-Prior P., Hurtado B., Sala N. Molecular basis of protein S deficiency. Thromb. Haemost. 2007;98:543–556. PubMed
De Stefano V., Finazzi G., Mannucci P.M. Inherited thrombophilia: Pathogenesis, clinical syndromes, and management. Blood. 1996;87:3531–3544. doi: 10.1182/blood.V87.9.3531.bloodjournal8793531. PubMed DOI
Di Minno M.N.D., Ambrosino P., Ageno W., Rosendaald F., Di Minno G., Dentali F. Natural anticoagulants deficiency and the risk of venous thromboembolism: A meta-analysis of observational studies. Thromb. Res. 2015;135:923–932. doi: 10.1016/j.thromres.2015.03.010. PubMed DOI
Bucciarelli P., Rosendaal F.R., Tripodi A., Mannucci P.M., De Stefano V., Palareti G., Finazzi G., Baudo F., Quintavalla R. Risk of venous thromboembolism and clinical manifestations in carriers of antithrombin, protein C, protein S deficiency, or activated protein C resistance: A multicenter collaborative family study. Arterioscler. Thromb. Vasc. Biol. 1999;19:1026–1033. doi: 10.1161/01.ATV.19.4.1026. PubMed DOI
Colucci G., Tsakiris D.A. Thrombophilia screening revisited: An issue of personalized medicine. J. Thromb. Thrombol. 2020;49:618–629. doi: 10.1007/s11239-020-02090-y. PubMed DOI PMC
Lotta L.A., Wang M., Yu J., Martinelli I., Yu F., Passamonti S.M., Consonni D., Pappalardo E., Menegatti M., Scherer S.E., et al. Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes. BMC Med. Genom. 2012;5:7. doi: 10.1186/1755-8794-5-7. PubMed DOI PMC
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Fidalgo T., Ribeiro M.L. Added value of next-generation sequencing for haemostasis diagnosis. Thromb. Haemost. Res. 2017;1:1007. PubMed PMC
Simeoni I., Stephens J.C., Hu F., Deevi S.V.V., Megy K., Bariana T.K., Lentaigne C., Schulman S., Sivapalaratnam S., Vries M.J.A., et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood. 2016;127:2791–2803. doi: 10.1182/blood-2015-12-688267. PubMed DOI PMC
Lee E.J., Dykas D.J., Leavitt A.D., Camire R.M., Ebberink E., García de Frutos P., Gnanasambandan K., Gu S.X., Huntington J.A., Lentz S.R., et al. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv. 2017;1:1224–1237. doi: 10.1182/bloodadvances.2017005249. PubMed DOI PMC
Downes K., Megy K., Duarte D., Vries M., Gebhart J., Hofer S., Shamardina O., Deevi S.V.V., Stephens J., Mapeta R., et al. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood. 2019;134:2082–2091. doi: 10.1182/blood.2018891192. PubMed DOI PMC
Bereczky Z., Gindele R., Speker M., Kállai J. Deficiencies of the Natural Anticoagulants—Novel Clinical Laboratory Aspects of Thrombophilia Testing. EJIFCC. 2016;27:130–146. PubMed PMC
Caspers M., Pavlova A., Driesen J., Harbrecht U., Klamroth R., Kadar J., Fischer R., Kemkes- Matthes B., Oldenburg J. Deficiencies of antithrombin, protein C and protein S—Practical experience in genetic analysis of a large patient cohort. Thromb. Haemost. 2012;108:247–257. doi: 10.1160/TH11-12-0875. PubMed DOI
Castaldo G., Cerbone A.M., Guida A., Tandurella I., Ingino R., Tufano A., Ceglia C., Di Minno M.N.D., Ruocco A.L., Di Minno G. Molecular analysis and genotype-phenotype correlation in patients with antithrombin deficiency from Southern Italy. Thromb. Haemost. 2012;107:673–680. doi: 10.1160/TH11-09-0671. PubMed DOI
Kim H.J., Seo J.Y., Lee K.O., Bang S.H., Lee S.T., Ki CH.S., Kim J.W., Jung CH.W., Kim D.K., Kim S.H. Distinct frequencies and mutation spectrums of genetic thrombophilia in Korea in comparison with other Asian countries both in patients with thromboembolism and in the general population. Haematologica. 2014;99:561–569. doi: 10.3324/haematol.2013.092023. PubMed DOI PMC
Luxembourg B., Delev D., Geisen C., Spannagl M., Krause M., Miesbach W., Heller CH., Bergmann F., Schmeink U., Grossmann R., et al. Molecular basis of antithrombin deficiency. Thromb. Haemost. 2011;105:635–646. PubMed
Provaznikova D., Matyskova M., Capova I., Grancarova D., Drbohlavova E., Slechtova M., Hrachovinova I. Seventeen novel SERPINC1 variants causing hereditary antithrombin deficiency in a Czech population. Thromb. Res. 2020;189:39–41. doi: 10.1016/j.thromres.2020.02.025. PubMed DOI
Trait R.C., Walker I.D., Perry D.J., Islam S.I.A.M., Daly M.E., McCall F., Conkie J.A., Carrell R.W. Prevalence of antithrombin deficiency in the healthy population. Br. J. Haematol. 1994;87:106–112. PubMed
Owen M.C., Borg J.Y., Soria C., Soria J., Caen J., Carrell R.W. Heparin binding defect in a new antithrombin III variant: Rouen, 47 Arg to His. Blood. 1987;69:1275–1279. doi: 10.1182/blood.V69.5.1275.1275. PubMed DOI
Gandrille S., Aiach M. Identification of Mutations in 90 of 121 Consecutive Symptomatic French Patients With a Type I Protein C Deficiency. Blood. 1995;86:2598–2605. doi: 10.1182/blood.V86.7.2598.2598. PubMed DOI
Grundy C.B., Chisholm M., Kakkar V.V., Cooper D.N. A novel homozygous missense mutation in the protein C (PROC) gene causing recurrent venous thrombosis. Hum. Genet. 1992;89:683–684. doi: 10.1007/BF00221963. PubMed DOI
Grundy C.B., Melissari E., Lindo V., Scully M.F., Kakkar V.V., Cooper D.N. Late-onset homozygous protein C deficiency. Lancet. 1991;338:575–576. doi: 10.1016/0140-6736(91)91144-J. PubMed DOI
Fidalgo T., Martinho P., Salvado R., Manco L., Oliveira A.C., Pinto C.S., Gonçalves E., Marques D., Sevivas T., Martins N., et al. Familial thrombotic risk based on the genetic background of Protein C Deficiency in a Portuguese Study. Eur. J. Hum. Genet. 2015;95:294–307. doi: 10.1111/ejh.12488. PubMed DOI
Li M., Long G.L. Identification of two novel point mutations in the human protein S gene associated with familial protein S deficiency and thrombosis. Arterioscler. Thromb. Vasc. Biol. 1996;16:1407–1415. doi: 10.1161/01.ATV.16.12.1407. PubMed DOI
Choi J., Kim H.J., Chang M.H., Choi J.R., Yoo J.H. A Rare Splicing Mutation in the PROS1 Gene of a Korean Patient with Type I Hereditary Protein S Deficiency. Ann. Clin. Lab. Sci. 2011;41:397–400. PubMed