The Potential Role of SP-G as Surface Tension Regulator in Tear Film: From Molecular Simulations to Experimental Observations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35628592
PubMed Central
PMC9148136
DOI
10.3390/ijms23105783
PII: ijms23105783
Knihovny.cz E-zdroje
- Klíčová slova
- dry eye, ocular surface, surface tension, surfactant protein, tear film,
- MeSH
- lidé MeSH
- lipidy analýza MeSH
- povrchové napětí MeSH
- rohovka metabolismus MeSH
- slzy * metabolismus MeSH
- syndromy suchého oka * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy MeSH
The ocular surface is in constant interaction with the environment and with numerous pathogens. Therefore, complex mechanisms such as a stable tear film and local immune defense mechanisms are required to protect the eye. This study describes the detection, characterization, and putative role of surfactant protein G (SP-G/SFTA2) with respect to wound healing and surface activity. Bioinformatic, biochemical, and immunological methods were combined to elucidate the role of SP-G in tear film. The results show the presence of SP-G in ocular surface tissues and tear film (TF). Increased expression of SP-G was demonstrated in TF of patients with dry eye disease (DED). Addition of recombinant SP-G in combination with lipids led to an accelerated wound healing of human corneal cells as well as to a reduction of TF surface tension. Molecular modeling of TF suggest that SP-G may regulate tear film surface tension and improve its stability through specific interactions with lipids components of the tear film. In conclusion, SP-G is an ocular surface protein with putative wound healing properties that can also reduce the surface tension of the tear film.
Faculty of Chemistry Jagiellonian University 30387 Krakow Poland
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences 182 00 Prague Czech Republic
Zobrazit více v PubMed
Craig J.P., Nelson J.D., Azar D.T., Belmonte C., Bron A.J., Chauhan S.K., de Paiva C.S., Gomes J.A.P., Hammitt K.M., Jones L., et al. TFOS DEWS II Report Executive Summary. Ocul. Surf. 2017;15:802–812. doi: 10.1016/j.jtos.2017.08.003. PubMed DOI
Uchino M., Schaumberg D.A. Dry Eye Disease: Impact on Quality of Life and Vision. Curr. Ophthalmol. Rep. 2013;1:51–57. doi: 10.1007/s40135-013-0009-1. PubMed DOI PMC
Kurihara H., Sato T., Akimoto N., Ogura T., Ito A. Identification and characterization of ABCB1-mediated and non-apoptotic sebum secretion in differentiated hamster sebocytes. Biochim. Et Biophys. Acta. 2011;1811:1090–1096. doi: 10.1016/j.bbalip.2011.08.011. PubMed DOI
Craig J.P., Nichols K.K., Akpek E.K., Caffery B., Dua H.S., Joo C.K., Liu Z., Nelson J.D., Nichols J.J., Tsubota K., et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017;15:276–283. doi: 10.1016/j.jtos.2017.05.008. PubMed DOI
Paulsen F., Garreis F. What drives Meibomian gland disease? Arch. Soc. Esp. Oftalmol. 2014;89:175–176. doi: 10.1016/j.oftal.2014.05.001. PubMed DOI
Nelson J.D., Shimazaki J., Benitez-del-Castillo J.M., Craig J.P., McCulley J.P., Den S., Foulks G.N. The international workshop on meibomian gland dysfunction: Report of the definition and classification subcommittee. Investig. Ophthalmol. Vis. Sci. 2011;52:1930–1937. doi: 10.1167/iovs.10-6997b. PubMed DOI PMC
Dietrich J., Garreis F., Paulsen F. Pathophysiology of Meibomian Glands—An Overview. Ocul. Immunol. Inflamm. 2021;29:803–810. doi: 10.1080/09273948.2021.1905856. PubMed DOI
Green-Church K.B., Butovich I., Willcox M., Borchman D., Paulsen F., Barabino S., Glasgow B.J. The international workshop on meibomian gland dysfunction: Report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Investig. Ophthalmol. Vis. Sci. 2011;52:1979–1993. doi: 10.1167/iovs.10-6997d. PubMed DOI PMC
Holly F.J., Lemp M.A. Tear physiology and dry eyes. Surv. Ophthalmol. 1977;22:69–87. doi: 10.1016/0039-6257(77)90087-X. PubMed DOI
Wright J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005;5:58–68. doi: 10.1038/nri1528. PubMed DOI
Crouch E., Wright J.R. Surfactant proteins a and d and pulmonary host defense. Annu. Rev. Physiol. 2001;63:521–554. doi: 10.1146/annurev.physiol.63.1.521. PubMed DOI
Yu S.H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim. Biophys. Acta. 1990;1046:233–241. doi: 10.1016/0005-2760(90)90236-Q. PubMed DOI
Rausch F., Schicht M., Paulsen F., Ngueya I., Bräuer L., Brandt W. “SP-G”, a putative new surfactant protein-tissue localization and 3D structure. PLoS ONE. 2012;7:e47789. doi: 10.1371/journal.pone.0047789. PubMed DOI PMC
Schicht M., Rausch F., Finotto S., Mathews M., Mattil A., Schubert M., Koch B., Traxdorf M., Bohr C., Worlitzsch D., et al. SFTA3, a novel protein of the lung: Three-dimensional structure, characterisation and immune activation. Eur. Respir. J. 2014;44:447–456. doi: 10.1183/09031936.00179813. PubMed DOI
Bräuer L., Kindler C., Jäger K., Sel S., Nölle B., Pleyer U., Ochs M., Paulsen F.P. Detection of Surfactant Proteins A and D in Human Tear Fluid and the Human Lacrimal System. Investig. Ophthalmol. Vis. Sci. 2007;48:3945–3953. doi: 10.1167/iovs.07-0201. PubMed DOI
Bräuer L., Johl M., Börgermann J., Pleyer U., Tsokos M., Paulsen F.P. Detection and Localization of the Hydrophobic Surfactant Proteins B and C in Human Tear Fluid and the Human Lacrimal System. Curr. Eye Res. 2007;32:931–938. doi: 10.1080/02713680701694369. PubMed DOI
Schicht M., Posa A., Paulsen F., Bräuer L. The ocular surfactant system and its relevance in the dry eye. Klin. Mon. Fur Augenheilkd. 2010;227:864–870. doi: 10.1055/s-0029-1245609. PubMed DOI
Schicht M., Garreis F., Hartjen N., Beileke S., Jacobi C., Sahin A., Holland D., Schroder H., Hammer C.M., Paulsen F., et al. SFTA3—A novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci. Rep. 2018;8:9791. doi: 10.1038/s41598-018-28005-9. PubMed DOI PMC
Mittal R.A., Hammel M., Schwarz J., Heschl K.M., Bretschneider N., Flemmer A.W., Herber-Jonat S., Konigshoff M., Eickelberg O., Holzinger A. SFTA2-A Novel Secretory Peptide Highly Expressed in the Lung-Is Modulated by Lipopolysaccharide but Not Hyperoxia. PLoS ONE. 2012;7:e40011. PubMed PMC
Keicho N., Ohashi J., Tamiya G., Nakata K., Taguchi Y., Azuma A., Ohishi N., Emi M., Park M.H., Inoko H., et al. Fine localization of a major disease-susceptibility locus for diffuse panbronchiolitis. Am. J. Hum. Genet. 2000;66:501–507. doi: 10.1086/302786. PubMed DOI PMC
Rausch F., Schicht M., Brauer L., Paulsen F., Brandt W. Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-H. J. Mol. Modeling. 2014;20:2513. doi: 10.1007/s00894-014-2513-0. PubMed DOI PMC
Craig J.P., Purslow C., Murphy P.J., Wolffsohn J.S. Effect of a liposomal spray on the pre-ocular tear film. Cont. Lens Anterior Eye. 2010;33:83–87. doi: 10.1016/j.clae.2009.12.007. PubMed DOI
Miller D.B., O’Callaghan J.P. Neuroendocrine aspects of the response to stress. Metabolism. 2002;51((Suppl. S1)):5–10. doi: 10.1053/meta.2002.33184. PubMed DOI
Zhang Z., Henzel W.J. Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci. 2004;13:2819–2824. doi: 10.1110/ps.04682504. PubMed DOI PMC
Schicht M., Rausch F., Beron M., Jacobi C., Garreis F., Hartjen N., Beileke S., Kruse F., Bräuer L., Paulsen F. Palate Lung Nasal Clone (PLUNC), a Novel Protein of the Tear Film: Three-Dimensional Structure, Immune Activation, and Involvement in Dry Eye Disease (DED) Investig. Ophthalmol. Vis. Sci. 2015;56:7312–7323. doi: 10.1167/iovs.15-17560. PubMed DOI
Hartshorn K.L., Crouch E., White M.R., Colamussi M.L., Kakkanatt A., Tauber B., Shepherd V., Sastry K.N. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Pt 1Am. J. Physiol. 1998;274:L958–L969. doi: 10.1152/ajplung.1998.274.6.L958. PubMed DOI
Diler E., Schicht M., Rabung A., Tschernig T., Meier C., Rausch F., Garreis F., Bräuer L., Paulsen F. The novel surfactant protein SP-H enhances the phagocytosis efficiency of macrophage-like cell lines U937 and MH-S. Bmc Res. Notes. 2014;7:851. doi: 10.1186/1756-0500-7-851. PubMed DOI PMC
Lemp M.A., Foulks G.N. The definition and classification of dry eye disease. Ocul. Surf. 2007;5:75–92. PubMed
Albertsmeyer A.-C., Kakkassery V., Spurr-Michaud S., Beeks O., Gipson I.K. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp. Eye Res. 2010;90:444–451. doi: 10.1016/j.exer.2009.12.009. PubMed DOI PMC
Ballard P.L. Hormonal influences during fetal lung development. Ciba Found. Symp. 1980;78:251–274. PubMed
Liley H.G., White R.T., Benson B.J., Ballard P.L. Glucocorticoids both stimulate and inhibit production of pulmonary surfactant protein A in fetal human lung. Proc. Natl. Acad. Sci. USA. 1988;85:9096–9100. doi: 10.1073/pnas.85.23.9096. PubMed DOI PMC
Dausch D., Lee S., Dausch S., Kim J.C., Schwert G., Michelson W. Comparative study of treatment of the dry eye syndrome due to disturbances of the tear film lipid layer with lipid-containing tear substitutes. Klin. Mon. Fur Augenheilkd. 2006;223:974–983. doi: 10.1055/s-2006-927266. PubMed DOI
Nosch D.S., Joos R.E., Job M. Prospective randomized study to evaluate the efficacy and tolerability of Ectoin(R) containing Eye Spray (EES09) and comparison to the liposomal Eye Spray Tears Again(R) (TA) in the treatment of dry eye disease. Cont. Lens Anterior Eye. 2021;44:101318. doi: 10.1016/j.clae.2020.04.003. PubMed DOI
Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinform. 2009;77((Suppl. S9)):114–122. doi: 10.1002/prot.22570. PubMed DOI PMC
Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Et Biophys. Acta. 2016;1858:2421–2430. doi: 10.1016/j.bbamem.2016.02.020. PubMed DOI
Araki-Sasaki K., Ohashi Y., Sasabe T., Hayashi K., Watanabe H., Tano Y., Handa H. An SV40-immortalized human corneal epithelial cell line and its characterization. Investig. Ophthalmol. Vis. Sci. 1995;36:614–621. PubMed
Diebold Y., Calonge M., Enriquez de Salamanca A., Callejo S., Corrales R.M., Saez V., Siemasko K.F., Stern M.E. Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Investig. Ophthalmol. Vis. Sci. 2003;44:4263–4274. doi: 10.1167/iovs.03-0560. PubMed DOI
Schicht M., Knipping S., Hirt R., Beileke S., Sel S., Paulsen F., Bräuer L. Detection of surfactant proteins A, B, C, and D in human nasal mucosa and their regulation in chronic rhinosinusitis with polyps. Am. J. Rhinol. Allergy. 2013;27:24–29. doi: 10.2500/ajra.2013.27.3838. PubMed DOI
Wizert A., Iskander D.R., Cwiklik L. Organization of lipids in the tear film: A molecular-level view. PLoS ONE. 2014;9:e92461. doi: 10.1371/journal.pone.0092461. PubMed DOI PMC
Wizert A., Iskander D.R., Cwiklik L. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. Biochim. Biophys. Acta Biomembr. 2017;1859:2289–2296. doi: 10.1016/j.bbamem.2017.08.015. PubMed DOI
Marrink S.J., Tieleman D.P. Perspective on the Martini model. Chem Soc. Rev. 2013;42:6801–6822. doi: 10.1039/c3cs60093a. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI