The Potential Role of SP-G as Surface Tension Regulator in Tear Film: From Molecular Simulations to Experimental Observations

. 2022 May 21 ; 23 (10) : . [epub] 20220521

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35628592

The ocular surface is in constant interaction with the environment and with numerous pathogens. Therefore, complex mechanisms such as a stable tear film and local immune defense mechanisms are required to protect the eye. This study describes the detection, characterization, and putative role of surfactant protein G (SP-G/SFTA2) with respect to wound healing and surface activity. Bioinformatic, biochemical, and immunological methods were combined to elucidate the role of SP-G in tear film. The results show the presence of SP-G in ocular surface tissues and tear film (TF). Increased expression of SP-G was demonstrated in TF of patients with dry eye disease (DED). Addition of recombinant SP-G in combination with lipids led to an accelerated wound healing of human corneal cells as well as to a reduction of TF surface tension. Molecular modeling of TF suggest that SP-G may regulate tear film surface tension and improve its stability through specific interactions with lipids components of the tear film. In conclusion, SP-G is an ocular surface protein with putative wound healing properties that can also reduce the surface tension of the tear film.

Zobrazit více v PubMed

Craig J.P., Nelson J.D., Azar D.T., Belmonte C., Bron A.J., Chauhan S.K., de Paiva C.S., Gomes J.A.P., Hammitt K.M., Jones L., et al. TFOS DEWS II Report Executive Summary. Ocul. Surf. 2017;15:802–812. doi: 10.1016/j.jtos.2017.08.003. PubMed DOI

Uchino M., Schaumberg D.A. Dry Eye Disease: Impact on Quality of Life and Vision. Curr. Ophthalmol. Rep. 2013;1:51–57. doi: 10.1007/s40135-013-0009-1. PubMed DOI PMC

Kurihara H., Sato T., Akimoto N., Ogura T., Ito A. Identification and characterization of ABCB1-mediated and non-apoptotic sebum secretion in differentiated hamster sebocytes. Biochim. Et Biophys. Acta. 2011;1811:1090–1096. doi: 10.1016/j.bbalip.2011.08.011. PubMed DOI

Craig J.P., Nichols K.K., Akpek E.K., Caffery B., Dua H.S., Joo C.K., Liu Z., Nelson J.D., Nichols J.J., Tsubota K., et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017;15:276–283. doi: 10.1016/j.jtos.2017.05.008. PubMed DOI

Paulsen F., Garreis F. What drives Meibomian gland disease? Arch. Soc. Esp. Oftalmol. 2014;89:175–176. doi: 10.1016/j.oftal.2014.05.001. PubMed DOI

Nelson J.D., Shimazaki J., Benitez-del-Castillo J.M., Craig J.P., McCulley J.P., Den S., Foulks G.N. The international workshop on meibomian gland dysfunction: Report of the definition and classification subcommittee. Investig. Ophthalmol. Vis. Sci. 2011;52:1930–1937. doi: 10.1167/iovs.10-6997b. PubMed DOI PMC

Dietrich J., Garreis F., Paulsen F. Pathophysiology of Meibomian Glands—An Overview. Ocul. Immunol. Inflamm. 2021;29:803–810. doi: 10.1080/09273948.2021.1905856. PubMed DOI

Green-Church K.B., Butovich I., Willcox M., Borchman D., Paulsen F., Barabino S., Glasgow B.J. The international workshop on meibomian gland dysfunction: Report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Investig. Ophthalmol. Vis. Sci. 2011;52:1979–1993. doi: 10.1167/iovs.10-6997d. PubMed DOI PMC

Holly F.J., Lemp M.A. Tear physiology and dry eyes. Surv. Ophthalmol. 1977;22:69–87. doi: 10.1016/0039-6257(77)90087-X. PubMed DOI

Wright J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005;5:58–68. doi: 10.1038/nri1528. PubMed DOI

Crouch E., Wright J.R. Surfactant proteins a and d and pulmonary host defense. Annu. Rev. Physiol. 2001;63:521–554. doi: 10.1146/annurev.physiol.63.1.521. PubMed DOI

Yu S.H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim. Biophys. Acta. 1990;1046:233–241. doi: 10.1016/0005-2760(90)90236-Q. PubMed DOI

Rausch F., Schicht M., Paulsen F., Ngueya I., Bräuer L., Brandt W. “SP-G”, a putative new surfactant protein-tissue localization and 3D structure. PLoS ONE. 2012;7:e47789. doi: 10.1371/journal.pone.0047789. PubMed DOI PMC

Schicht M., Rausch F., Finotto S., Mathews M., Mattil A., Schubert M., Koch B., Traxdorf M., Bohr C., Worlitzsch D., et al. SFTA3, a novel protein of the lung: Three-dimensional structure, characterisation and immune activation. Eur. Respir. J. 2014;44:447–456. doi: 10.1183/09031936.00179813. PubMed DOI

Bräuer L., Kindler C., Jäger K., Sel S., Nölle B., Pleyer U., Ochs M., Paulsen F.P. Detection of Surfactant Proteins A and D in Human Tear Fluid and the Human Lacrimal System. Investig. Ophthalmol. Vis. Sci. 2007;48:3945–3953. doi: 10.1167/iovs.07-0201. PubMed DOI

Bräuer L., Johl M., Börgermann J., Pleyer U., Tsokos M., Paulsen F.P. Detection and Localization of the Hydrophobic Surfactant Proteins B and C in Human Tear Fluid and the Human Lacrimal System. Curr. Eye Res. 2007;32:931–938. doi: 10.1080/02713680701694369. PubMed DOI

Schicht M., Posa A., Paulsen F., Bräuer L. The ocular surfactant system and its relevance in the dry eye. Klin. Mon. Fur Augenheilkd. 2010;227:864–870. doi: 10.1055/s-0029-1245609. PubMed DOI

Schicht M., Garreis F., Hartjen N., Beileke S., Jacobi C., Sahin A., Holland D., Schroder H., Hammer C.M., Paulsen F., et al. SFTA3—A novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci. Rep. 2018;8:9791. doi: 10.1038/s41598-018-28005-9. PubMed DOI PMC

Mittal R.A., Hammel M., Schwarz J., Heschl K.M., Bretschneider N., Flemmer A.W., Herber-Jonat S., Konigshoff M., Eickelberg O., Holzinger A. SFTA2-A Novel Secretory Peptide Highly Expressed in the Lung-Is Modulated by Lipopolysaccharide but Not Hyperoxia. PLoS ONE. 2012;7:e40011. PubMed PMC

Keicho N., Ohashi J., Tamiya G., Nakata K., Taguchi Y., Azuma A., Ohishi N., Emi M., Park M.H., Inoko H., et al. Fine localization of a major disease-susceptibility locus for diffuse panbronchiolitis. Am. J. Hum. Genet. 2000;66:501–507. doi: 10.1086/302786. PubMed DOI PMC

Rausch F., Schicht M., Brauer L., Paulsen F., Brandt W. Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-H. J. Mol. Modeling. 2014;20:2513. doi: 10.1007/s00894-014-2513-0. PubMed DOI PMC

Craig J.P., Purslow C., Murphy P.J., Wolffsohn J.S. Effect of a liposomal spray on the pre-ocular tear film. Cont. Lens Anterior Eye. 2010;33:83–87. doi: 10.1016/j.clae.2009.12.007. PubMed DOI

Miller D.B., O’Callaghan J.P. Neuroendocrine aspects of the response to stress. Metabolism. 2002;51((Suppl. S1)):5–10. doi: 10.1053/meta.2002.33184. PubMed DOI

Zhang Z., Henzel W.J. Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci. 2004;13:2819–2824. doi: 10.1110/ps.04682504. PubMed DOI PMC

Schicht M., Rausch F., Beron M., Jacobi C., Garreis F., Hartjen N., Beileke S., Kruse F., Bräuer L., Paulsen F. Palate Lung Nasal Clone (PLUNC), a Novel Protein of the Tear Film: Three-Dimensional Structure, Immune Activation, and Involvement in Dry Eye Disease (DED) Investig. Ophthalmol. Vis. Sci. 2015;56:7312–7323. doi: 10.1167/iovs.15-17560. PubMed DOI

Hartshorn K.L., Crouch E., White M.R., Colamussi M.L., Kakkanatt A., Tauber B., Shepherd V., Sastry K.N. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Pt 1Am. J. Physiol. 1998;274:L958–L969. doi: 10.1152/ajplung.1998.274.6.L958. PubMed DOI

Diler E., Schicht M., Rabung A., Tschernig T., Meier C., Rausch F., Garreis F., Bräuer L., Paulsen F. The novel surfactant protein SP-H enhances the phagocytosis efficiency of macrophage-like cell lines U937 and MH-S. Bmc Res. Notes. 2014;7:851. doi: 10.1186/1756-0500-7-851. PubMed DOI PMC

Lemp M.A., Foulks G.N. The definition and classification of dry eye disease. Ocul. Surf. 2007;5:75–92. PubMed

Albertsmeyer A.-C., Kakkassery V., Spurr-Michaud S., Beeks O., Gipson I.K. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp. Eye Res. 2010;90:444–451. doi: 10.1016/j.exer.2009.12.009. PubMed DOI PMC

Ballard P.L. Hormonal influences during fetal lung development. Ciba Found. Symp. 1980;78:251–274. PubMed

Liley H.G., White R.T., Benson B.J., Ballard P.L. Glucocorticoids both stimulate and inhibit production of pulmonary surfactant protein A in fetal human lung. Proc. Natl. Acad. Sci. USA. 1988;85:9096–9100. doi: 10.1073/pnas.85.23.9096. PubMed DOI PMC

Dausch D., Lee S., Dausch S., Kim J.C., Schwert G., Michelson W. Comparative study of treatment of the dry eye syndrome due to disturbances of the tear film lipid layer with lipid-containing tear substitutes. Klin. Mon. Fur Augenheilkd. 2006;223:974–983. doi: 10.1055/s-2006-927266. PubMed DOI

Nosch D.S., Joos R.E., Job M. Prospective randomized study to evaluate the efficacy and tolerability of Ectoin(R) containing Eye Spray (EES09) and comparison to the liposomal Eye Spray Tears Again(R) (TA) in the treatment of dry eye disease. Cont. Lens Anterior Eye. 2021;44:101318. doi: 10.1016/j.clae.2020.04.003. PubMed DOI

Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinform. 2009;77((Suppl. S9)):114–122. doi: 10.1002/prot.22570. PubMed DOI PMC

Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Et Biophys. Acta. 2016;1858:2421–2430. doi: 10.1016/j.bbamem.2016.02.020. PubMed DOI

Araki-Sasaki K., Ohashi Y., Sasabe T., Hayashi K., Watanabe H., Tano Y., Handa H. An SV40-immortalized human corneal epithelial cell line and its characterization. Investig. Ophthalmol. Vis. Sci. 1995;36:614–621. PubMed

Diebold Y., Calonge M., Enriquez de Salamanca A., Callejo S., Corrales R.M., Saez V., Siemasko K.F., Stern M.E. Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Investig. Ophthalmol. Vis. Sci. 2003;44:4263–4274. doi: 10.1167/iovs.03-0560. PubMed DOI

Schicht M., Knipping S., Hirt R., Beileke S., Sel S., Paulsen F., Bräuer L. Detection of surfactant proteins A, B, C, and D in human nasal mucosa and their regulation in chronic rhinosinusitis with polyps. Am. J. Rhinol. Allergy. 2013;27:24–29. doi: 10.2500/ajra.2013.27.3838. PubMed DOI

Wizert A., Iskander D.R., Cwiklik L. Organization of lipids in the tear film: A molecular-level view. PLoS ONE. 2014;9:e92461. doi: 10.1371/journal.pone.0092461. PubMed DOI PMC

Wizert A., Iskander D.R., Cwiklik L. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. Biochim. Biophys. Acta Biomembr. 2017;1859:2289–2296. doi: 10.1016/j.bbamem.2017.08.015. PubMed DOI

Marrink S.J., Tieleman D.P. Perspective on the Martini model. Chem Soc. Rev. 2013;42:6801–6822. doi: 10.1039/c3cs60093a. PubMed DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...