Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistry

. 2022 May 11 ; 15 (10) : . [epub] 20220511

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35629479

Grantová podpora
011/RID/2018/19 Minister of Science and Higher Education of Poland

The aim of this study was to investigate the restorative connections of composite materials after fracture, under controlled conditions of treating the materials with novel, spherosilicate-based (SS) primers bearing both methacryl (MA) and trimethoxysilyl (TMOS) groups. The chemistry of methacrylate group insertion and reactive groups hydrolysis has been studied with the aid of 1H NMR (Nuclear Magnetic Resonance) spectroscopy. The light-cured resin composites were repaired by activating the connection site with the obtained primers and, for comparison, a silane (methacryloxypropyltrimethoxysilane, MATMOS) as a conventional coupling agent bearing the same reactive groups. The resistance of such a joint was tested in a three-point bending test after 24 h and 28 days period of sample conditioning. The effect of bond application was also studied, showing that spherosilicate-based primers may be used more effectively than MATMOS for two-step (primer-composite) restorative process, while for silane, the three-step process with bond application is crucial for satisfactory joint quality. The joint failure mode was determined by microscopic analysis and it was found that SS-4MA-4TMOS and SS-2MA-6TMOS application resulted in mostly composite, and not joint, failure. After 28 days of conditioning, the flexural strength of the joint repaired with SS-4MA-4TMOS was at 94% of the neat, solid material under the same procedure. However, the strength of the neat composite was observed to decline during the conditioning process by ~30%. The joint behavior was explained on the basis of the gradual hydrolysis effect (the greatest decrease being observed for silane).

Zobrazit více v PubMed

Boček J., Matějka L., Mentlík V., Trnka P., Šlouf M. Electrical and thermomechanical properties of epoxy-POSS nanocomposites. Eur. Polym. J. 2011;47:861–872. doi: 10.1016/j.eurpolymj.2011.02.023. DOI

Yen Y.C., Ye Y.S., Cheng C.C., Lu C.H., Tsai L.D., Huang J.M., Chang F.C. The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane. Polymer. 2010;51:84–91. doi: 10.1016/j.polymer.2009.11.033. DOI

Bacchi A., Yih J.A., Platta J., Knight J., Pfeifer C.S. Shrinkage/stress reduction and mechanical properties improvement in restorative composites formulated with thio-urethane oligomers. J. Mech. Behav. Biomed. Mater. 2018;78:235–240. doi: 10.1016/j.jmbbm.2017.11.011. PubMed DOI PMC

Pfeifer C.S., Silva L.R., Kawano Y., Braga R.R. Bis-GMA co-polymerizations: Influence on conversion, flexural properties, fracture toughness and susceptibility to ethanol degradation of experimental composites. Dent. Mater. 2009;25:1136–1141. doi: 10.1016/j.dental.2009.03.010. PubMed DOI

Blum I.R., Lynch C.D., Wilson N.H.F. Factors influencing repair of dental restorations with resin composite. Clin. Cosmet. Investig. Dent. 2014;6:81–87. doi: 10.2147/CCIDE.S53461. PubMed DOI PMC

Blum I.R., Lynch C.D., Wilson N.H.F. Teaching of the repair of defective composite restorations in Scandinavian dental schools. J. Oral. Rehabil. 2012;39:210–216. doi: 10.1111/j.1365-2842.2011.02260.x. PubMed DOI

Carvalho R., Chisini L., Ferrúa C., Guiraldo R., Gonini J.A., Moura S., Tarquínio S., Demarco F. The influence of concentration of HEMA on degree of conversion and cytotoxicity of a dental bonding resin. Minerva Stomatol. 2016;65:65–71. PubMed

Nicolae L., Shelton R., Cooper P.M.R., Palin W. The Effect of UDMA/TEGDMA Mixtures and Bioglass Incorporation on the Mechanical and Physical Properties of Resin and Resin-Based Composite Materials. Conf. Pap. Sci. 2014;2014:646143. doi: 10.1155/2014/646143. DOI

Plueddeman E.P. Silane Coupling Agents. 2nd ed. Springer Science + Business Media; New York, NY, USA: 1991.

Nakonieczny D.S., Kern F., Dufner L., Dubiel A., Antonowicz M., Matus K. Effect of Calcination Temperature on the Phase Composition, Morphology, and Thermal Properties of ZrO2 and Al2O3 Modified with APTES (3-aminopropyltriethoxysilane) Materials. 2021;14:6651. doi: 10.3390/ma14216651. PubMed DOI PMC

Mahdavi R., Talesh S.S. Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, morphological and, selective sonophotocatalysis of mixed pollutants: Box–Behnken design (BBD) J. Alloy. Compd. 2022;896:163121. doi: 10.1016/j.jallcom.2021.163121. DOI

Li H., Liu Y., Liu Y., Zeng Q., Liang J. 3D printed ceramic slurries with improved solid content through optimization of alumina powder and coupling agent. J. Manuf. Processes. 2021;64:1206–1213. doi: 10.1016/j.jmapro.2021.02.047. DOI

Dalle Vacche S., Michaud V., Damjanovic D., Månson J.A., Leterrier Y. Improved mechanical dispersion or use of coupling agents? Advantages and disadvantages for the properties of fluoropolymer/ceramic composites. Polymer. 2018;154:8–16. doi: 10.1016/j.polymer.2018.08.061. DOI

Sabri B.A., Meenaloshini S., Abreeza N.M., Abed A.N. A review study on coupling agents used as ceramic fillers modifiers for dental applications. Mater. Today Proc. 2021. in press . DOI

Zanchi C.H., Ogliari F.A., Silva R.M.E., Lund R.G., Machado H.H., Prati C., Carreño N.L.V., Piva E. Effect of the silane concentration on the selected properties of an experimental microfilled composite resin. Appl. Adhes. Sci. 2015;3:27. doi: 10.1186/s40563-015-0054-0. DOI

Jukka M., Lippo L., Mutlu Ö., Antti Y.U., Vallittu P. An introduction to silanes and their clinical application in dentistry. Int. J. Prosthodont. 2004;17:155–164. PubMed

Lee C., Kashima K., Ichikawa A., Yamaguchi S., Imazato S. Influence of hydrolysis degradation of silane coupling agents on mechanical performance of CAD/CAM resin composites: In silico multi-scale analysis. Dent. Mater. J. 2020;39:2019–2223. doi: 10.4012/dmj.2019-223. PubMed DOI

Kei Lung C.Y., Matinlinna J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012;28:467–477. doi: 10.1016/j.dental.2012.02.009. PubMed DOI

Rizvi S.B., Yildirimer L., Ghaderi S., Ramesh B., Seifalian A.M., Keshtgar M. A novel POSS-coated quantum dot for biological application. Int. J. Nanomed. 2012;7:3915–3927. doi: 10.2147/IJN.S28577. PubMed DOI PMC

Brząkalski D., Przekop R.E., Frydrych M., Pakuła D., Dobrosielska M., Sztorch B., Marciniec B. Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials. 2022;15:494. doi: 10.3390/ma15020494. PubMed DOI PMC

Fong H., Dickens S.H., Flaim G.M. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dent. Mater. 2005;21:520–529. doi: 10.1016/j.dental.2004.08.003. PubMed DOI

Ghanbari H., de Mel A., Seifalian A.M. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: A glimpse into prospective horizons. Int. J. Nanomed. 2011;6:775–786. doi: 10.2147/IJN.S14881. PubMed DOI PMC

Wang W., Sun X., Huang L., Gao Y., Ban J., Shen L., Chen J. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes. Int. J. Nanomed. 2014;9:841–852. doi: 10.2147/IJN.S56062. PubMed DOI PMC

Liu Y., Wu X., Sun Y., Xie W. POSS Dental Nanocomposite Resin: Synthesis, Shrinkage, Double Bond Conversion, Hardness, and Resistance Properties. Polymers. 2018;10:369. doi: 10.3390/polym10040369. PubMed DOI PMC

Wang J., Liu Y., Yu J., Sun Y., Xie W. Study of POSS on the Properties of Novel Inorganic Dental Composite Resin. Polymers. 2020;12:478. doi: 10.3390/polym12020478. PubMed DOI PMC

Rizk M., Hohlfeld L., Thanh Tao T.L., Biehl R., Lühmann N., Mohn D., Wiegand A. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass. Dent. Mater. 2017;33:1056–1065. doi: 10.1016/j.dental.2017.06.012. PubMed DOI

Mousavinasab S.M., Atai M., Barekatain M., Fattahi P., Fattahi A., Rakhshan V. Effects of ethanol concentrations of acrylate-based dental adhesives on microtensile composite-dentin bond strength and hybrid layer structure of a 10 wt% polyhedral oligomeric silsesquioxane (POSS)-incorporated bonding agent. Dent. Res. J. 2018;15:25–32. doi: 10.4103/1735-3327.223615. PubMed DOI PMC

Tavares Canellasa T.A., de Almeida Nevesb A., Bezerra dos Santosa I.K., de Rezendea A.R.P., Fellowsc C.E., da Silvaa E.M. Characterization of low-shrinkage dental composites containing methacrylethyl-polyhedral oligomeric silsesquioxane (ME-POSS) J. Mech. Behav. Biomed. Mater. 2019;90:566–574. doi: 10.1016/j.jmbbm.2018.10.028. PubMed DOI

Dias Filho N.L., Aquino H.A., de Pires G., Caetano L. Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers. J. Braz. Chem. Soc. 2016;17:533–541. doi: 10.1590/S0103-50532006000300016. DOI

Dentistry—Polymer-Based Restorative Materials. ISO; Geneva, Switzerland:

Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009.

Gigler P., Drees M., Riener K., Bechlars B., Herrmann W.A., Kühn F.E. Mechanistic insights into the hydrosilylation of allyl compounds—Evidence for different coexisting reaction pathways. J. Catal. 2012;295:1–14. doi: 10.1016/j.jcat.2012.06.006. DOI

Loomans B.A., Cardoso M.V., Roeters F.J., Opdam N.J., De Munck J., Huysmans M.C., Van Meerbeek B. Is there one optimal repair technique for all composites? Dent. Mater. 2011;27:701–709. doi: 10.1016/j.dental.2011.03.013. PubMed DOI

Hamano N., Chiang Y.C., Nyamaa I., Yamaguchi H., Ino S., Hickel R., Kunzelmann K.H. Repair of silorane-based dental composites: Influence of surface treatments. Dent. Mater. 2012;28:894–902. doi: 10.1016/j.dental.2012.04.014. PubMed DOI

da Costa T.R., Serrano A.M., Atman A.P., Loguercio A.D., Reis A. Durability of composite repair using different surface treatments. J. Dent. 2012;40:513–521. doi: 10.1016/j.jdent.2012.03.001. PubMed DOI

Li J. Effects of surface properties on bond strength between layers of newly cured dental composites. J. Oral Rehabil. 1997;24:358–360. doi: 10.1046/j.1365-2842.1997.00508.x. PubMed DOI

Eliasson S.T., Dahl J.E. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method. Acta Biomater. Odontol. Scand. 2017;3:21–29. doi: 10.1080/23337931.2017.1301211. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...