Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
011/RID/2018/19
Minister of Science and Higher Education of Poland
PubMed
35629479
PubMed Central
PMC9147205
DOI
10.3390/ma15103451
PII: ma15103451
Knihovny.cz E-zdroje
- Klíčová slova
- POSS, SSQ, adhesive, cage siloxane, light curable, oral medicine, stomatology,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to investigate the restorative connections of composite materials after fracture, under controlled conditions of treating the materials with novel, spherosilicate-based (SS) primers bearing both methacryl (MA) and trimethoxysilyl (TMOS) groups. The chemistry of methacrylate group insertion and reactive groups hydrolysis has been studied with the aid of 1H NMR (Nuclear Magnetic Resonance) spectroscopy. The light-cured resin composites were repaired by activating the connection site with the obtained primers and, for comparison, a silane (methacryloxypropyltrimethoxysilane, MATMOS) as a conventional coupling agent bearing the same reactive groups. The resistance of such a joint was tested in a three-point bending test after 24 h and 28 days period of sample conditioning. The effect of bond application was also studied, showing that spherosilicate-based primers may be used more effectively than MATMOS for two-step (primer-composite) restorative process, while for silane, the three-step process with bond application is crucial for satisfactory joint quality. The joint failure mode was determined by microscopic analysis and it was found that SS-4MA-4TMOS and SS-2MA-6TMOS application resulted in mostly composite, and not joint, failure. After 28 days of conditioning, the flexural strength of the joint repaired with SS-4MA-4TMOS was at 94% of the neat, solid material under the same procedure. However, the strength of the neat composite was observed to decline during the conditioning process by ~30%. The joint behavior was explained on the basis of the gradual hydrolysis effect (the greatest decrease being observed for silane).
Centre for Advanced Technologies Adam Mickiewicz University in Poznan 61 614 Poznan Poland
Faculty of Chemistry Adam Mickiewicz University in Poznan 61 614 Poznan Poland
Zobrazit více v PubMed
Boček J., Matějka L., Mentlík V., Trnka P., Šlouf M. Electrical and thermomechanical properties of epoxy-POSS nanocomposites. Eur. Polym. J. 2011;47:861–872. doi: 10.1016/j.eurpolymj.2011.02.023. DOI
Yen Y.C., Ye Y.S., Cheng C.C., Lu C.H., Tsai L.D., Huang J.M., Chang F.C. The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane. Polymer. 2010;51:84–91. doi: 10.1016/j.polymer.2009.11.033. DOI
Bacchi A., Yih J.A., Platta J., Knight J., Pfeifer C.S. Shrinkage/stress reduction and mechanical properties improvement in restorative composites formulated with thio-urethane oligomers. J. Mech. Behav. Biomed. Mater. 2018;78:235–240. doi: 10.1016/j.jmbbm.2017.11.011. PubMed DOI PMC
Pfeifer C.S., Silva L.R., Kawano Y., Braga R.R. Bis-GMA co-polymerizations: Influence on conversion, flexural properties, fracture toughness and susceptibility to ethanol degradation of experimental composites. Dent. Mater. 2009;25:1136–1141. doi: 10.1016/j.dental.2009.03.010. PubMed DOI
Blum I.R., Lynch C.D., Wilson N.H.F. Factors influencing repair of dental restorations with resin composite. Clin. Cosmet. Investig. Dent. 2014;6:81–87. doi: 10.2147/CCIDE.S53461. PubMed DOI PMC
Blum I.R., Lynch C.D., Wilson N.H.F. Teaching of the repair of defective composite restorations in Scandinavian dental schools. J. Oral. Rehabil. 2012;39:210–216. doi: 10.1111/j.1365-2842.2011.02260.x. PubMed DOI
Carvalho R., Chisini L., Ferrúa C., Guiraldo R., Gonini J.A., Moura S., Tarquínio S., Demarco F. The influence of concentration of HEMA on degree of conversion and cytotoxicity of a dental bonding resin. Minerva Stomatol. 2016;65:65–71. PubMed
Nicolae L., Shelton R., Cooper P.M.R., Palin W. The Effect of UDMA/TEGDMA Mixtures and Bioglass Incorporation on the Mechanical and Physical Properties of Resin and Resin-Based Composite Materials. Conf. Pap. Sci. 2014;2014:646143. doi: 10.1155/2014/646143. DOI
Plueddeman E.P. Silane Coupling Agents. 2nd ed. Springer Science + Business Media; New York, NY, USA: 1991.
Nakonieczny D.S., Kern F., Dufner L., Dubiel A., Antonowicz M., Matus K. Effect of Calcination Temperature on the Phase Composition, Morphology, and Thermal Properties of ZrO2 and Al2O3 Modified with APTES (3-aminopropyltriethoxysilane) Materials. 2021;14:6651. doi: 10.3390/ma14216651. PubMed DOI PMC
Mahdavi R., Talesh S.S. Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, morphological and, selective sonophotocatalysis of mixed pollutants: Box–Behnken design (BBD) J. Alloy. Compd. 2022;896:163121. doi: 10.1016/j.jallcom.2021.163121. DOI
Li H., Liu Y., Liu Y., Zeng Q., Liang J. 3D printed ceramic slurries with improved solid content through optimization of alumina powder and coupling agent. J. Manuf. Processes. 2021;64:1206–1213. doi: 10.1016/j.jmapro.2021.02.047. DOI
Dalle Vacche S., Michaud V., Damjanovic D., Månson J.A., Leterrier Y. Improved mechanical dispersion or use of coupling agents? Advantages and disadvantages for the properties of fluoropolymer/ceramic composites. Polymer. 2018;154:8–16. doi: 10.1016/j.polymer.2018.08.061. DOI
Sabri B.A., Meenaloshini S., Abreeza N.M., Abed A.N. A review study on coupling agents used as ceramic fillers modifiers for dental applications. Mater. Today Proc. 2021. in press . DOI
Zanchi C.H., Ogliari F.A., Silva R.M.E., Lund R.G., Machado H.H., Prati C., Carreño N.L.V., Piva E. Effect of the silane concentration on the selected properties of an experimental microfilled composite resin. Appl. Adhes. Sci. 2015;3:27. doi: 10.1186/s40563-015-0054-0. DOI
Jukka M., Lippo L., Mutlu Ö., Antti Y.U., Vallittu P. An introduction to silanes and their clinical application in dentistry. Int. J. Prosthodont. 2004;17:155–164. PubMed
Lee C., Kashima K., Ichikawa A., Yamaguchi S., Imazato S. Influence of hydrolysis degradation of silane coupling agents on mechanical performance of CAD/CAM resin composites: In silico multi-scale analysis. Dent. Mater. J. 2020;39:2019–2223. doi: 10.4012/dmj.2019-223. PubMed DOI
Kei Lung C.Y., Matinlinna J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012;28:467–477. doi: 10.1016/j.dental.2012.02.009. PubMed DOI
Rizvi S.B., Yildirimer L., Ghaderi S., Ramesh B., Seifalian A.M., Keshtgar M. A novel POSS-coated quantum dot for biological application. Int. J. Nanomed. 2012;7:3915–3927. doi: 10.2147/IJN.S28577. PubMed DOI PMC
Brząkalski D., Przekop R.E., Frydrych M., Pakuła D., Dobrosielska M., Sztorch B., Marciniec B. Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials. 2022;15:494. doi: 10.3390/ma15020494. PubMed DOI PMC
Fong H., Dickens S.H., Flaim G.M. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dent. Mater. 2005;21:520–529. doi: 10.1016/j.dental.2004.08.003. PubMed DOI
Ghanbari H., de Mel A., Seifalian A.M. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: A glimpse into prospective horizons. Int. J. Nanomed. 2011;6:775–786. doi: 10.2147/IJN.S14881. PubMed DOI PMC
Wang W., Sun X., Huang L., Gao Y., Ban J., Shen L., Chen J. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes. Int. J. Nanomed. 2014;9:841–852. doi: 10.2147/IJN.S56062. PubMed DOI PMC
Liu Y., Wu X., Sun Y., Xie W. POSS Dental Nanocomposite Resin: Synthesis, Shrinkage, Double Bond Conversion, Hardness, and Resistance Properties. Polymers. 2018;10:369. doi: 10.3390/polym10040369. PubMed DOI PMC
Wang J., Liu Y., Yu J., Sun Y., Xie W. Study of POSS on the Properties of Novel Inorganic Dental Composite Resin. Polymers. 2020;12:478. doi: 10.3390/polym12020478. PubMed DOI PMC
Rizk M., Hohlfeld L., Thanh Tao T.L., Biehl R., Lühmann N., Mohn D., Wiegand A. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass. Dent. Mater. 2017;33:1056–1065. doi: 10.1016/j.dental.2017.06.012. PubMed DOI
Mousavinasab S.M., Atai M., Barekatain M., Fattahi P., Fattahi A., Rakhshan V. Effects of ethanol concentrations of acrylate-based dental adhesives on microtensile composite-dentin bond strength and hybrid layer structure of a 10 wt% polyhedral oligomeric silsesquioxane (POSS)-incorporated bonding agent. Dent. Res. J. 2018;15:25–32. doi: 10.4103/1735-3327.223615. PubMed DOI PMC
Tavares Canellasa T.A., de Almeida Nevesb A., Bezerra dos Santosa I.K., de Rezendea A.R.P., Fellowsc C.E., da Silvaa E.M. Characterization of low-shrinkage dental composites containing methacrylethyl-polyhedral oligomeric silsesquioxane (ME-POSS) J. Mech. Behav. Biomed. Mater. 2019;90:566–574. doi: 10.1016/j.jmbbm.2018.10.028. PubMed DOI
Dias Filho N.L., Aquino H.A., de Pires G., Caetano L. Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers. J. Braz. Chem. Soc. 2016;17:533–541. doi: 10.1590/S0103-50532006000300016. DOI
Dentistry—Polymer-Based Restorative Materials. ISO; Geneva, Switzerland:
Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009.
Gigler P., Drees M., Riener K., Bechlars B., Herrmann W.A., Kühn F.E. Mechanistic insights into the hydrosilylation of allyl compounds—Evidence for different coexisting reaction pathways. J. Catal. 2012;295:1–14. doi: 10.1016/j.jcat.2012.06.006. DOI
Loomans B.A., Cardoso M.V., Roeters F.J., Opdam N.J., De Munck J., Huysmans M.C., Van Meerbeek B. Is there one optimal repair technique for all composites? Dent. Mater. 2011;27:701–709. doi: 10.1016/j.dental.2011.03.013. PubMed DOI
Hamano N., Chiang Y.C., Nyamaa I., Yamaguchi H., Ino S., Hickel R., Kunzelmann K.H. Repair of silorane-based dental composites: Influence of surface treatments. Dent. Mater. 2012;28:894–902. doi: 10.1016/j.dental.2012.04.014. PubMed DOI
da Costa T.R., Serrano A.M., Atman A.P., Loguercio A.D., Reis A. Durability of composite repair using different surface treatments. J. Dent. 2012;40:513–521. doi: 10.1016/j.jdent.2012.03.001. PubMed DOI
Li J. Effects of surface properties on bond strength between layers of newly cured dental composites. J. Oral Rehabil. 1997;24:358–360. doi: 10.1046/j.1365-2842.1997.00508.x. PubMed DOI
Eliasson S.T., Dahl J.E. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method. Acta Biomater. Odontol. Scand. 2017;3:21–29. doi: 10.1080/23337931.2017.1301211. PubMed DOI PMC