Cry3Aa Toxin Is Not Suitable to Control Lepidopteran Pest Spodoptera littoralis (Boisd.)

. 2022 May 15 ; 11 (10) : . [epub] 20220515

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631737

Grantová podpora
QK1910270 NAZV
ITMS 313011W112 Operational Program Integrated Infrastructure: Sustainable smart farming systems taking into account the future challenges
RVO:60077344 Czech Academy of Sciences

The toxicity of the Bacillus thuringiensis (Bt) toxin Cry3Aa-originally used against the main potato pest, the Colorado potato beetle, Leptinotarsa decemlineata-was verified on this species and then evaluated against the Egyptian armyworm, Spodoptera littoralis, which is a pest of several economically important plants. Larvae of S. littoralis were fed a semi-artificial diet supplemented either with a recombinant or with a natural Bt toxin Cry3Aa and with the genetically engineered (GE) potato of variety Superior NewLeaf (SNL) expressing Cry3Aa. Cry3Aa concentration in the diet and the content in the leaves were verified via ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) during and at the end of the experiments. The biological effectiveness of the coleopteran-specific Cry3Aa with previous reports of activity against S. littoralis was tested on five different populations of S. littoralis larvae by monitoring 13 parameters involving development from penultimate instar, weight, the efficiency of food conversion to biomass, ability to reproduce, and mortality. Although some occasional differences occurred between the Cry3Aa treatments and control, any key deleterious effects on S. littoralis in this study were not confirmed. We concluded that the Cry3Aa toxin appears to be non-toxic to S. littoralis, and its practical application against this pest is unsuitable.

Zobrazit více v PubMed

Bravo A., Gomez I., Porta H., Garcia-Gomez B.I., Rodriguez-Almazan C., Pardo L., Soberon M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013;6:17–26. doi: 10.1111/j.1751-7915.2012.00342.x. PubMed DOI PMC

Jurat-Fuentes J.L., Crickmore N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invertebr. Pathol. 2017;142:5–10. doi: 10.1016/j.jip.2016.07.018. PubMed DOI

Ye W., Zhu L., Liu Y., Crickmore N., Peng D., Ruan L., Sun M. Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Appl. Microbiol. Biotechnol. 2012;78:4795–4801. doi: 10.1128/AEM.00340-12. PubMed DOI PMC

Van Frankenhuyzen K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J. Invertebr. Pathol. 2013;114:76–85. doi: 10.1016/j.jip.2013.05.010. PubMed DOI

Vojtech E., Meissle M., Poppy G.M. Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) Transgenic Res. 2005;14:133–144. doi: 10.1007/s11248-005-2736-z. PubMed DOI

Alfazairy A.A., El-Ahwany A.M., Mohamed E.A., Zaghloul H.A., El-Helow E.R. Microbial control of the cotton leafworm Spodoptera littoralis (Boisd.) by Egyptian Bacillus thuringiensis isolates. Folia Microbiol. 2013;58:155–162. doi: 10.1007/s12223-012-0193-7. PubMed DOI

BenFarhat-Touzri D., Saadaoui M., Abdelkefi-Mesrati L., Saadaoui I., Azzouz H., Tounsi S. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. J. Invertebr. Pathol. 2013;112:142–145. doi: 10.1016/j.jip.2012.11.007. PubMed DOI

Krieg A. Bacillus Thuringiensis—Ein Mikrobielles Insekticid. Grundlagen und Anwendung (Acta Phytomedica, Heft 10) Paul Parey; Berlin/Hamburg, Germany: 1986. 191p. DM 58,00. DOI

Keller B., Langerbruch G.A. Control of coleopteran pests by Bacillus thuringiensis. In: Entwistle P.F., Cory J.S., Bailey M.J., Higgs S., editors. Bacillus Thuringiensis, an Environmental Biopesticide: Theory and Practice. Volume 69. Wiley; Chichester, UK: 1993. pp. 171–191. The Quarterly Review of Biology. DOI

Knowles B.H. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv. Insect Physiol. 1994;24:275–308. doi: 10.1016/S0065-2806(08)60085-5. DOI

Deml R., Meise T., Dettner K. Effects of Bacillus thuringiensis δ-endotoxins on food utilization, growth, and survival of selected phytophagous insects. J. Appl. Entomol. 1999;123:55–64. doi: 10.1046/j.1439-0418.1999.00312.x. DOI

Hussein H.M., Habuštová O., Sehnal F. Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.) Pest Manag. Sci. 2005;61:1186–1192. doi: 10.1002/ps.1112. PubMed DOI

Hussein H.M., Sehnal F., Habuštová O. Bt-potatoes resistant to Colorado potato beetle affect the performance of Egyptian armyworm (Spodoptera littoralis) Acta Fytotech. Et Zootech. 2005;8:38–41.

Hussein H.M., Habuštová O., Turanli F., Sehnal F. Potato Expressing beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces performance of a moth. J. Chem. Ecol. 2006;32:1–13. doi: 10.1007/s10886-006-9347-x. PubMed DOI

European and Mediterranean Plant Protection Organization [OEPP/EPPO] Diagnostic protocol for Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. OEPP/EPPO Bull. 2015;34:257–270.

Lopez-Vaamonde C. Handbook of Alien Species in Europe. Volume 3. Springer; Dordrecht, The Netherlands: 2008. Species accounts of 100 of the most invasive alien species in Europe; pp. 269–374. DOI

Reed G.L., Jensen A.S., Riebe J., Head G., Duan J.J. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: Comparative efficacy and non-target impacts. Entomol. Exp. Et Appl. 2001;100:89–100. doi: 10.1046/j.1570-7458.2001.00851.x. DOI

Duncan D., Hammond D., Zalewski J., Cudnohufsky J., Kaniewski W., Thornton M., Bookout J., Lavrik P., Rogan G., Feldman-Riebe J. Field performance of transgenic potato, with resistance to Colorado potato beetle and viruses. HortScience. 2002;37:275–276. doi: 10.21273/HORTSCI.37.2.275. DOI

Ferry N., Mulligan E.A., Majerus M.E.N., Gatehouse A.M.R. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transgenic Res. 2007;16:795–812. doi: 10.1007/s11248-007-9088-9. PubMed DOI

Latham J.R., Love M., Hilbeck A. The distinct properties of natural and GM cry insecticidal proteins. Biotechnol. Genet. Eng. Rev. 2017;33:62–96. doi: 10.1080/02648725.2017.1357295. PubMed DOI

Robertson J.L., Preisler H.K., Ng S.S., Hickle L.A., Gelernter W.D. Natural variation: A complicating factor in bioassay with chemical and microbial pesticides. J. Econ. Entomol. 1995;88:1–10. doi: 10.1093/jee/88.1.1. DOI

Robertson J.L., Russell R.M., Preisler H.K., Savin N.E. Bioassays with Arthropods. 2nd ed. CRC Press; Boca Raton, FL, USA: Taylor and Francis Group; Boca Raton, FL, USA: 2007. 199p

Perlak F.J., Stone T.B., Muskopf Y.M., Petersen L.J., Parker G.B., McPherson S.A., Wyman J., Love S., Reed G., Biever D., et al. Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Mol. Biol. 1993;22:313–321. doi: 10.1007/BF00014938. PubMed DOI

Whalon M.E., Wierenga J.M. Bacillus thuringiensis resistant Colorado potato beetle and transgenic plants: Some operational and ecological implications for deployment. Biocontrol Sci. Technol. 1994;4:555–561. doi: 10.1080/09583159409355369. DOI

Grafius E.J., Douches D.S. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. 1st ed. Springer; Dordrecht, The Netherlands: 2008. The present and future role of insect-resistant genetically modified potato cultivars in IPM; pp. 195–221.

International Service for the Acquisition of Agri-Biotech Applications [ISAAA] Global Status of Commercialized Biotech/GM Crops ISAAA Brief No. 55, ISAAA, Ithaca, USA. 2019. [(accessed on 1 April 2022)]. Available online: https://www.isaaa.org/resources/publications/briefs/55/

Haider M.Z., Ellar D.J. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxin: Interaction with phospholipid vesicles. Biochim. Et Biophys. Acta (BBA) Biomenbrane. 1989;978:216–222. doi: 10.1016/0005-2736(89)90118-1. PubMed DOI

Spies A.G., Spence K.D. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca sexta—SEM study. Tissue Cell. 1985;17:379–394. doi: 10.1016/0040-8166(85)90056-4. PubMed DOI

Peacock J.W., Schweitzer D.F., Carter J.L., Dubois N.R. Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environ. Entomol. 1998;27:450–457. doi: 10.1093/ee/27.2.450. DOI

Moreau G., Bauce E. Developmental polymorphism: A major factor for understanding sublethal effects of Bacillus thuringiensis. Entomol. Exp. Appl. 2001;98:133–140. doi: 10.1046/j.1570-7458.2001.00767.x. DOI

Sneh B., Schuster S., Broza M. Insecticidal activity of Bacillus thuringiensis strains against the Egyptian cotton leafworm, Spodoptera littoralis Boisd. (Lep. Noctuidae) Entomophaga. 1981;26:179–190. doi: 10.1007/BF02375031. DOI

Keller M., Sneh B., Strizhov N., Prudovsky E., Regev A., Koncz C., Schell J., Zilberstein A. Digestion of δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem. Mol. Biol. 1996;26:365–373. doi: 10.1016/0965-1748(95)00102-6. PubMed DOI

Mohamed S.A., Badr N.A., El-Hafez A.A. Efficacy of two formulations of pathogenic bacteria Bacillus thuringiensis against the first instar larvae of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Han.) (Lepidoptera: Noctuidae) Egypt. J. Agric. Res. 2000;78:1025–1040.

Porcar M., Caballero P. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J. Appl. Microbiol. 2000;89:309–316. doi: 10.1046/j.1365-2672.2000.01115.x. PubMed DOI

Romeilah M., Abdel-Megeed M.A. The role of certain bacterial preparations (Bacillus thuringiensis) in controlling the cotton leafworm Spodoptera littoralis (Boisd.) Egypt. J. Agric. Res. 2000;78:1877–1887.

Dutton A., Klein H., Romeis J., Bigler F. Prey-mediated effects of Bacillus thuringiensis spray on the predator Chrysoperla carnea in maize. Biol. Control. 2003;26:209–215. doi: 10.1016/S1049-9644(02)00127-5. DOI

Svobodová Z., Shu Y., Skoková Habuštová O., Romeis J., Meissle M. Stacked Bt maize and arthropod predators—Exposure to insecticidal Cry proteins and potential hazards. Proceeding R. Soc. B Biol. Sci. 2017;284:20170440. doi: 10.1098/rspb.2017.0440. PubMed DOI PMC

Chen Y., Romeis J., Meissle M. Performance of Daphnia magna on flour, leaves, and pollen from different maize lines: Implications for risk assessment of genetically engineered crops. Ecotoxicol. Environ. Saf. 2021;212:111967. doi: 10.1016/j.ecoenv.2021.111967. PubMed DOI

Chestukhina G.G., Kostina L.I., Zalunin I.A., Kotova T.S., Katruka S.P., Kuznetsov Y.S., Stepanov V.M. Proteins of Bacillus thuringiensis delta-endotoxin crystals. Biokhimiia. 1977;42:1660–1667. PubMed

Dunn O.J. Multiple comparisons among means. [(accessed on 28 March 2022)];J. Am. Stat. Assoc. 1961 56:52–64. doi: 10.1080/01621459.1961.10482090. Available online: http://www.jstor.org/stable/2282330. DOI

Robertson J.L., Preisler H.K., Russell R.M. PoloPlus Probit and Logit Analysis USER’S GUIDE. CRC Press; Boca Raton, FL, USA: 2002–2003. p. 36.

StatSoft Inc. Statistica Electronic Manual. StatSoft Inc.; Tulsa, OK, USA: 2015. [(accessed on 8 March 2018)]. Available online: http://documentation.statsoft.com/STATISTICAHelp.aspx?path=common/AboutSTATISTICA/ElectronicManualIndex.

GraphPad Software Inc. GraphPad Prism 5.0 User´s Guide. GraphPad Software Inc.; San Diego, CA, USA: 2007. [(accessed on 15 May 2020)]. Available online: https://www.graphpad.com/guides/prism/7/user-guide/index.htm?citing_graphpad_prism.htm.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...