Influence of Multiple Thermomechanical Processing of 3D Filaments Based on Polylactic Acid and Polyhydroxybutyrate on Their Rheological and Utility Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV 20 0193
Slovak Research and Development Agency
APVV 20 0256
Slovak Research and Development Agency
PubMed
35631830
PubMed Central
PMC9143941
DOI
10.3390/polym14101947
PII: polym14101947
Knihovny.cz E-resources
- Keywords
- 3D printing, material recycling, polyhydroxybutyrate, polylactic acid,
- Publication type
- Journal Article MeSH
This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material's thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.
See more in PubMed
Plastics Europe Plastics-the Facts. 2020. [(accessed on 7 March 2022)]. Available online: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.
Plavec R., Hlaváčiková S., Omaníková L., Feranc J., Vanovčanová Z., Tomanová K., Bočkaj J., Kruželák J., Medlenová E., Gálisová I., et al. Recycling possibilities of bioplastics based on PLA/PHB blends. Polym. Test. 2020;92:106880. doi: 10.1016/j.polymertesting.2020.106880. DOI
Hamad K., Kaseem M., Deri F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013;98:2801–2812. doi: 10.1016/j.polymdegradstab.2013.09.025. DOI
Parliament, Directive 2018/852 of the European. Packaging and Packaging Waste. [(accessed on 7 March 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0852&from=EN.
Li J., Wu C., Chu P.K., Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543. DOI
Cicala G., Latteri A., Del Curto B., Russo A.L., Recca G., Farè S. Engineering Thermoplastics for Additive Manufacturing: A Critical Perspective with Experimental Evidence to Support Functional Applications. J. Appl. Biomater. Funct. Mater. 2017;15:10–18. doi: 10.5301/jabfm.5000343. PubMed DOI
Kleinfehn A.P., Lindemann J.A.L., Razvi A., Philip P., Richardson K., Nettleton K., Becker M.L., Dean D. Modulating Bioglass Concentration in 3D Printed Poly(propylene fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups. Biomacromolecules. 2019;20:4345–4352. doi: 10.1021/acs.biomac.9b00941. PubMed DOI
Yu K., Xin A., Du H., Li Y., Wang Q. Additive manufacturing of self-healing elastomers. NPG Asia Mater. 2019;11:7. doi: 10.1038/s41427-019-0109-y. DOI
Ramiah P., Du Toit L.C., Choonara Y.E., Kondiah P.P.D., Pillay V. Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Front. Mater. 2020;7:76. doi: 10.3389/fmats.2020.00076. DOI
Chen S., Zhang Q., Feng J. 3D printing of tunable shape memory polymer blends. J. Mater. Chem. C. 2017;5:8361–8365. doi: 10.1039/C7TC02534C. DOI
Shin D.-Y., Lee J.S., Koo B.-R., Ahn H.-J. Hierarchical hybrid nanostructure of 1T-tungsten disulfide quantum dots/multihollow capillary bundle-type mesoporous carbon for ultrafast and ultrastable lithium storage. Chem. Eng. J. 2021;412:15. doi: 10.1016/j.cej.2021.128547. DOI
Munaz A., Vadivelu R.K., John J.S., Barton M., Kamble H., Nguyen N.-T. Three-dimensional printing of biological matters. J. Sci. Adv. Mater. Devices. 2016;1:1–17. doi: 10.1016/j.jsamd.2016.04.001. DOI
Gibson I., Rosen D.W., Stucker B. The Use of Multiple Materials in Additive Manufacturing. Addit. Manuf. Technol. 2010:436–449. doi: 10.1007/978-1-4419-1120-9_17. DOI
Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074. PubMed DOI PMC
Sanatgar R.H., Campagne C.H., Nierstrasz V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 2017;403:551–563. doi: 10.1016/j.apsusc.2017.01.112. DOI
Gupta N., Weber C., Newsome S. Additive Manufacturing: Status and Opportunities. Science and Technology Policy Institute; Washington, DC, USA: 2012. pp. 1–35.
Yao T., Ye J., Deng Z., Zhang K., Ma Y., Ouyang H. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Compos. Part B Eng. 2020;188:107894. doi: 10.1016/j.compositesb.2020.107894. DOI
Chua C.K., Leong K.F., Lim C.S. Rapid Prototyping: Principles and Applications. 3rd ed. World Scientific Publishing Company; Singapore: 2010.
Pham D., Dimov S.S. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Wurm M.C., Möst T., Bergauer B., Rietzel D., Neukam F.W., Cifuentes S.C., Von Wilmowsky C. In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling. J. Biol. Eng. 2017;11:29. doi: 10.1186/s13036-017-0073-4. PubMed DOI PMC
Bose S., Vahabzadeh S., Bandyopadhyay A. Bone Tissue Engineering Using 3D Printing. Mater. Today. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. DOI
Chia H.N., Wu B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4. PubMed DOI PMC
Abouzaid K., Guessasma S., Belhabib S., Bassir D., Chouaf A. Printability of co-polyester using fused deposition modelling and related mechanical performance. Eur. Polym. J. 2018;108:262–273. doi: 10.1016/j.eurpolymj.2018.08.034. DOI
Gebler M., Schoot Uiterkamp A.J.M., Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy. 2014;74:158–167. doi: 10.1016/j.enpol.2014.08.033. DOI
Yadav D., Garg R.K., Ahlawat A., Chhabra D. 3D printable biomaterials for orthopedic implants: Solution for sustainable and circular economy. Resour. Policy. 2020;68:101767. doi: 10.1016/j.resourpol.2020.101767. DOI
Pinho A.C., Amaro A.M., Piedade A.P. 3D printing goes greener: Study of the properties of post-consumer recycled polymers for the manufacturing of engineering components. Waste Manag. 2020;118:426–434. doi: 10.1016/j.wasman.2020.09.003. PubMed DOI
Youngjae B., Young T.K. Chapter 14—Bioplastics for Food Packaging: Chemistry and Physics. In: Han J.H., editor. Innovations in Food Packaging. 2nd ed. Academic Press; Cambridge, MA, USA: 2014. pp. 353–368.
Koller M. Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering. 2017;4:88. doi: 10.3390/bioengineering4040088. PubMed DOI PMC
Abdelwahab M.A., Flynn A., Chiou B.S., Imam S., Orts W., Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym. Degrad. Stab. 2012;97:1822–1828. doi: 10.1016/j.polymdegradstab.2012.05.036. DOI
Imre B., Pukánszky B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013;49:1215–1233. doi: 10.1016/j.eurpolymj.2013.01.019. DOI
Bastioli C. Handbook of Biodegradable Polymers. Walter de Gruyter GmbH & Co. KG; Berlin, Germany: 2020.
Van de Velde K., Kiekens P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002;21:433–442. doi: 10.1016/S0142-9418(01)00107-6. DOI
van Wijk A.J.M., van Wijk I. 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. IOS Press; Amsterdam, The Netherlands: 2015.
Cisneros-López E.O., Pal A.K., Rodriguez A.U., Wu F., Misra M., Mielewski D.K., Kiziltas A., Mohanty A.K. Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Mater. Today Sustain. 2020;7:100027. doi: 10.1016/j.mtsust.2019.100027. DOI
Haro F.B., Burgo J.M.D.A.D., D’Amato R., Islán M., Heras E.S., Alonso J.M.G., Mendez J.A.J. Monitoring an Analysis of Perturbations in Fusion Deposition Modelling (FDM) Processes for the Use of Biomaterials. J. Med. Syst. 2019;43:109. doi: 10.1007/s10916-019-1236-2. PubMed DOI
Corcione C.E., Gervaso F., Scalera F., Padmanabhan S.K., Madaghiele M., Montagna F., Sannino A., Licciulli A., Maffezzoli A. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram. Int. 2018;45:2803–2810. doi: 10.1016/j.ceramint.2018.07.297. DOI
Tellis B., Szivek J., Bliss C., Margolis D., Vaidyanathan R., Calvert P. Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C. 2008;28:171–178. doi: 10.1016/j.msec.2006.11.010. PubMed DOI PMC
Rimington R.P., Capel A.J., Christie S.D., Lewi M.P. Biocompatible 3D printed polymers via fused deposition modelling direct C 2 C 12 cellular phenotype in vitro. Lab Chip. 2017;17:2982–2993. doi: 10.1039/C7LC00577F. PubMed DOI
Singh B.N., Panda N.N., Mund R., Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr. Polym. 2016;151:335–347. doi: 10.1016/j.carbpol.2016.05.088. PubMed DOI
Jammalamadaka U., Tappa K. Recent Advances in Biomaterials for 3D Printing and and tissue engineering. J. Funct. Biomater. 2018;9:22. doi: 10.3390/jfb9010022. PubMed DOI PMC
Rojas-Martínez L., Flores-Hernandez C., López-Marín L., Martinez-Hernandez A., Thorat S., Vasquez C.R., Del Rio-Castillo A., Velasco-Santos C. 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: Effect of geometry and structure. Eur. Polym. J. 2020;141:110088. doi: 10.1016/j.eurpolymj.2020.110088. DOI
Zhang M., Thomas N.L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv. Polym. Technol. 2011;30:67–79. doi: 10.1002/adv.20235. DOI
Chiulan I., Frone A.N., Brandabur C., Panaitescu D.M. Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering. 2017;5:2. doi: 10.3390/bioengineering5010002. PubMed DOI PMC
Xiao L., Wang B., Yang G., Gauthier M. Poly (lactic acid)-based biomaterials: Synthesis, modification and applications. Biomed. Sci. Eng. Technol. 2012;11:247–282.
Kontárová S., Přikryl R., Melčová V., Menčík P., Horálek M., Figalla S., Plavec R., Feranc J., Sadílek J., Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials. 2020;13:4736. doi: 10.3390/ma13214736. PubMed DOI PMC
Upadhyay R.K., Mishra A.K., Kumar A. Mechanical Degradation of 3D Printed PLA in Simulated Marine Environment. Surf. Interfaces. 2020;21:100778. doi: 10.1016/j.surfin.2020.100778. DOI
Scaffaro R., Botta L., Passaglia E., Oberhauser W., Frediani M., Di Landro L. Comparison of different processing methods to prepare poly(lactid acid)-hydrotalcite composites. Polym. Eng. Sci. 2013;54:1804–1810. doi: 10.1002/pen.23724. DOI
Le Marec P.E., Ferry L., Quantin J.-C., Bénézet J.-C., Bonfils F., Guilbert S., Bergeret A. Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization. Polym. Degrad. Stab. 2014;110:353–363. doi: 10.1016/j.polymdegradstab.2014.10.003. DOI
Tuna B., Ozkoc G. Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid) J. Polym. Environ. 2016;25:983–993. doi: 10.1007/s10924-016-0856-6. DOI
Lim J., You M., Li J., Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater. Sci. Eng. C. 2017;79:917–929. doi: 10.1016/j.msec.2017.05.132. PubMed DOI
Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI
Wang S., Capoen L., D’hooge D.R., Cardon L. Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials? Plast. Rubber Compos. 2018;47:9–16. doi: 10.1080/14658011.2017.1397308. DOI
Soroudi A., Jakubowicz I. Recycling of bioplastics, their blends and biocomposites: A review. Eur. Polym. J. 2013;49:2839–2858. doi: 10.1016/j.eurpolymj.2013.07.025. DOI
Armentano I., Fortunati E., Burgos N., Dominici F., Luzi F., Fiori S., Jiménez A., Yoon K., Ahn J., Kang S., et al. Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT. 2015;64:980–988. doi: 10.1016/j.lwt.2015.06.032. DOI
Jost V., Kopitzky R. Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging applications-reflections on miscibility and effects on the mechanical and barrier properties. Chem. Biochem. Eng. Q. 2015;29:221–246. doi: 10.15255/CABEQ.2014.2257. DOI
Ma Y., Li L., Wang Y. Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 2018;31:739–746. doi: 10.1002/pts.2408. DOI
Blumm E., Owen A.J. Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends. Polymer. 1995;36:4077–4081. doi: 10.1016/0032-3861(95)90987-D. DOI
Koyama N., Doi Y. Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid] Polymer. 1997;38:1589–1593. doi: 10.1016/S0032-3861(96)00685-4. DOI
Ohkoshi I., Abe H., Doi Y. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate] Polymer. 2000;41:5985–5992. doi: 10.1016/S0032-3861(99)00781-8. DOI
Arrieta M.P., Lopez J., Hernandez A., Rayon E. Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. Eur. Polym. J. 2014;50:255–270. doi: 10.1016/j.eurpolymj.2013.11.009. DOI
Arrieta M.P., Samper M.D., Lopez J., Jiménez A. Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014;22:460–470. doi: 10.1007/s10924-014-0654-y. DOI
Arrieta M., Fortunati E., Dominici F., López J., Kenny J. Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydr. Polym. 2015;121:265–275. doi: 10.1016/j.carbpol.2014.12.056. PubMed DOI
Wang S., Ma P., Wang R., Zhang Y. Mechanical, thermal and degradation properties of poly(D, L-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym. Degrad. Stab. 2008;93:1364–1369. doi: 10.1016/j.polymdegradstab.2008.03.026. DOI
Alexy P., Chodák I., Bakoš D., Bugaj P., Pavlacková M., Tomanová K., Benovic F., Plavec R., Mihalik M. Biologically Degradable Polymeric Composition with High Deformability. WO2012141660A1. [(accessed on 7 March 2022)];2012 April 11; Available online: https://patents.google.com/patent/WO2012141660A1/
Menčík P., Přikryl R., Stehnová I., Melčová V., Kontárová S., Figalla S., Alexy P., Bočkaj J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials. 2018;11:1893. doi: 10.3390/ma11101893. PubMed DOI PMC
Fuentes M.A.V., Thakur S., Wu F., Misra M., Gregori S., Mohanty A.K. Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication. Sci. Rep. 2020;1:10. PubMed PMC
Ausejo J.G., Rydz J., Musioł M., Sikorska W., Janeczek H., Sobota M., Wlodarczyk J., Szeluga U., Hercog A., Kowalczuk M. Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polym. Degrad. Stab. 2018;156:100–110. doi: 10.1016/j.polymdegradstab.2018.08.008. DOI
Lazarevic D., Aoustin E., Buclet N., Brandt N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010;2:246–259. doi: 10.1016/j.resconrec.2010.09.014. DOI
Perugini F., Mastellone M.L., Arena U. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Prog. 2005;2:246–259. doi: 10.1002/ep.10078. DOI
Piemonte V. Bioplastic Wastes: The Best Final Disposition for Energy Saving. J. Polym. Environ. 2011;19:988–994. doi: 10.1007/s10924-011-0343-z. DOI
Arena U., Mastellone M.L., Perugini F. Life Cycle assessment of a plastic packaging recycling system. Int. J. Life Cycle Assess. 2003;8:92–98. doi: 10.1007/BF02978432. DOI
Fisher M. Plastics and the Environment. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2003. Plastics recycling.
Al-Salem S.M., Lettieri P., Baeyens J. Recycling and recovery rotes of plastic solid waste: A review. Waste Manag. 2009;10:2625–2643. doi: 10.1016/j.wasman.2009.06.004. PubMed DOI
Hopewell J., Dvorak R., Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:2115–2126. doi: 10.1098/rstb.2008.0311. PubMed DOI PMC
Hatti-Kaul R., Nilsson L.J., Zhang B., Lundmark S. Designing Biobased Recyclable Polymers for Plastics: A Review. Trends Biotechnol. 2020;1:50–67. doi: 10.1016/j.tibtech.2019.04.011. PubMed DOI
Mantia F.L.A. Handbook of Plastics Recycling. iSmithers Rapra Publishing, Rapra Technology Limited; Shropshire, UK: 2002.
Żenkiewicz M., Kurcok M. Effects of compatibilizers and electron radiation on thermomechanical properties of composites consisting of five recycled polymers. Polym. Test. 2008;27:420–427. doi: 10.1016/j.polymertesting.2008.01.002. DOI
European Commission . Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A European Strategy for Plastics in a Circular Economy. European Commission; Brussels, Belgium: 2019. COM/2018/028.
Hinsken H., Moss S., Pauquet J.-R., Zweifel H. Degradation of polyolefins during melt processing. Polym. Degrad. Stab. 1991;34:279–293. doi: 10.1016/0141-3910(91)90123-9. DOI
Kometani H., Matsumura T., Suga T., Kanai T. Quantitative Analysis for Polymer Degradation in the Extrusion Process. Int. Polym. Process. 2006;21:24–31. doi: 10.3139/217.0092. DOI
Hu H., Zhang R., Kong Z., Wang K., Ying W.B., Wang J., Zhu J. Bio-based poly(butylene furandicarboxylate)-b-poly(ethylene glycol) copolymers: The effect of poly(ethylene glycol) molecular weight on thermal properties and hydrolysis degradation behavior. Adv. Ind. Eng. Polym. Res. 2019;2:167–177. doi: 10.1016/j.aiepr.2019.09.002. DOI
Sawaguchi T., Sasaki D., Takamura A. On the entanglement-based mechanism in thermal degradation of vinyl polymers. Polym. Degrad. Stab. 2019;169:108990. doi: 10.1016/j.polymdegradstab.2019.108990. DOI
FBeltrán R., Lorenzo V., Acosta J., de la Orden M.U., Urreaga J.M. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid) J. Environ. Manag. 2018;216:25–31. doi: 10.1016/j.jenvman.2017.05.020. PubMed DOI
Beltrán F.R., Infante C., de la Orden M.U., Urreaga J.M. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 2019;219:46–56. doi: 10.1016/j.jclepro.2019.01.206. DOI
Żenkiewicz M., Richert J., Rytlewski P., Moraczewski K., Stepczyńska M., Karasiewicz T. Characterisation of multi-extruded poly(lactic acid) Polym. Test. 2009;28:412–418. doi: 10.1016/j.polymertesting.2009.01.012. DOI
Pillin I., Montrelay N., Bourmaud A., Grohens Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid) Polym. Degrad. Stab. 2008;93:321–328. doi: 10.1016/j.polymdegradstab.2007.12.005. DOI
Badia J.D., Strömberg E., Karlsson S., Ribes-Greus A. Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polym. Degrad. Stab. 2012;97:670–678. doi: 10.1016/j.polymdegradstab.2011.12.019. DOI
Agüero A., Morcillo M.d.C., Quiles-Carrillo L., Balart R., Boronat T., Lascano D., Torres-Giner S., Fenollar O. Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers. 2019;11:1908. doi: 10.3390/polym11121908. PubMed DOI PMC
Rivas L.F., Casarin S.A., Cavalcante N., Alencar M.I., Agnelli J.A.M., de Medeiros E.S., de Oliveira Wanderley Neto A., de Oliveira M.P., de Medeiros A.M., Ferreira e Santos A.S. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies. Polímeros. 2017;27:122–128. doi: 10.1590/0104-1428.2406. DOI
Mikušová M., Mihalík M., Alexy P., Tomanová K., Plavec R., Bočkaj J., Vanovčanová Z. Method for Testing of Processing Stability of Biodegradable Polyesters Based on Oscillation Rheometry. Volume 67. Kautschuk Gummi Kunstoffe; Heidelberg, Germany: 2014. pp. 51–54.
Ma Y., Zhang W., Wang Z., Wang Z., Xie Q., Niu H., Guo H., Yuan Y., Liu C. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomater. 2016;44:110–124. doi: 10.1016/j.actbio.2016.08.023. PubMed DOI
Wang Z., Ma A., Wang Y.X., Liu Y., Chen K., Wu K., Yu S., Yuan Y., Liu C. Urethane-based low-temperature curing, highly-customized and multifunctional poly (glycerol sebacate)-co-poly (ethylene glycol) copolymers. Acta Biomater. 2018;71:279–292. doi: 10.1016/j.actbio.2018.03.011. PubMed DOI