Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FW01010189
Technology Agency of the Czech Republic
PubMed
35632274
PubMed Central
PMC9144294
DOI
10.3390/s22103865
PII: s22103865
Knihovny.cz E-resources
- Keywords
- autoencoder architecture, deep learning, inertial measurement unit, motion speed estimation, walking speed,
- MeSH
- Leg MeSH
- Pedestrians * MeSH
- Deep Learning * MeSH
- Humans MeSH
- Wearable Electronic Devices * MeSH
- Motion MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.
See more in PubMed
McGinnis R.S., Mahadevan N., Moon Y., Seagers K., Sheth N., Wright J.A., Jr., DiCristofaro S., Silva I., Jortberg E., Ceruolo M., et al. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis. PLoS ONE. 2017;12:e0178366. doi: 10.1371/journal.pone.0178366. PubMed DOI PMC
Schimpl M., Lederer C., Daumer M. Development and validation of a new method to measure walking speed in free-living environments using the actibelt® platform. PLoS ONE. 2011;6:e23080. doi: 10.1371/journal.pone.0023080. PubMed DOI PMC
Soltani A., Dejnabadi H., Savary M., Aminian K. Real-world gait speed estimation using wrist sensor: A personalized approach. IEEE J. Biomed. Health Inform. 2019;24:658–668. doi: 10.1109/JBHI.2019.2914940. PubMed DOI
Ojeda L., Borenstein J. Non-GPS navigation for security personnel and first responders. J. Navig. 2007;60:391. doi: 10.1017/S0373463307004286. DOI
Yang S., Li Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors. 2012;12:6102–6116. doi: 10.3390/s120506102. PubMed DOI PMC
Zhang R., Yang H., Höflinger F., Reindl L.M. Adaptive zero velocity update based on velocity classification for pedestrian tracking. IEEE Sens. J. 2017;17:2137–2145. doi: 10.1109/JSEN.2017.2665678. DOI
Wang Y., Shkel A.M. Adaptive threshold for zero-velocity detector in ZUPT-aided pedestrian inertial navigation. IEEE Sens. Lett. 2019;3:1–4. doi: 10.1109/LSENS.2019.2946129. DOI
Wagstaff B., Peretroukhin V., Kelly J. Improving foot-mounted inertial navigation through real-time motion classification; Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN); Sapporo, Japan. 18–21 September 2017; pp. 1–8.
Bai N., Tian Y., Liu Y., Yuan Z., Xiao Z., Zhou J. A high-precision and low-cost IMU-based indoor pedestrian positioning technique. IEEE Sens. J. 2020;20:6716–6726. doi: 10.1109/JSEN.2020.2976102. DOI
Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press; Cambridge, MA, USA: 2016.
Aminian K., Robert P., Jequier E., Schutz Y. Estimation of speed and incline of walking using neural network. IEEE Trans. Instrum. Meas. 1995;44:743–746. doi: 10.1109/19.387322. DOI
Sikandar T., Rabbi M.F., Ghazali K.H., Altwijri O., Alqahtani M., Almijalli M., Altayyar S., Ahamed N.U. Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification. Sensors. 2021;21:2836. doi: 10.3390/s21082836. PubMed DOI PMC
Kawaguchi N., Nozaki J., Yoshida T., Hiroi K., Yonezawa T., Kaji K. End-to-end walking speed estimation method for smartphone PDR using DualCNN-LSTM; Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN); Pisa, Italy. 30 September–3 October 2019; pp. 463–470.
Yan H., Herath S., Furukawa Y. Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, and new methods. arXiv. 20191905.12853
Feigl T., Kram S., Woller P., Siddiqui R.H., Philippsen M., Mutschler C. RNN-aided human velocity estimation from a single IMU. Sensors. 2020;20:3656. doi: 10.3390/s20133656. PubMed DOI PMC
Qian Y., Yang K., Zhu Y., Wang W., Wan C. Combining deep learning and model-based method using Bayesian Inference for walking speed estimation. Biomed. Signal Process. Control. 2020;62:102117. doi: 10.1016/j.bspc.2020.102117. DOI
Li Y., Wang L. Human Activity Recognition Based on Residual Network and BiLSTM. Sensors. 2022;22:635. doi: 10.3390/s22020635. PubMed DOI PMC
Fawaz H.I., Lucas B., Forestier G., Pelletier C., Schmidt D.F., Weber J., Webb G.I., Idoumghar L., Muller P.A., Petitjean F. Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Discov. 2020;34:1936–1962. doi: 10.1007/s10618-020-00710-y. DOI
Jaegle A., Gimeno F., Brock A., Zisserman A., Vinyals O., Carreira J. Perceiver: General Perception with Iterative Attention. arXiv. 20212103.03206
Donahue J., Anne Hendricks L., Guadarrama S., Rohrbach M., Venugopalan S., Saenko K., Darrell T. Long-term recurrent convolutional networks for visual recognition and description; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015; pp. 2625–2634. PubMed
Yue-Hei Ng J., Hausknecht M., Vijayanarasimhan S., Vinyals O., Monga R., Toderici G. Beyond short snippets: Deep networks for video classification; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015; pp. 4694–4702.
Lotter W., Kreiman G., Cox D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv. 20161605.08104
Alam M.N., Munia T.T.K., Fazel-Rezai R. Gait speed estimation using Kalman Filtering on inertial measurement unit data; Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Jeju Island, Korea. 11–15 July 2017; pp. 2406–2409. PubMed
Nuñez E.H., Parhar S., Iwata I., Setoguchi S., Chen H., Daneault J.F. Comparing different methods of gait speed estimation using wearable sensors in individuals with varying levels of mobility impairments; Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. 20–24 July 2020; pp. 3792–3798. PubMed
Arumukhom Revi D., De Rossi S.M.M., Walsh C.J., Awad L.N. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Sensors. 2021;21:6976. doi: 10.3390/s21216976. PubMed DOI PMC
Leng L., Zhang J., Khan M.K., Chen X., Alghathbar K. Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in DCT domain. Int. J. Phys. Sci. 2010;5:2543–2554.
Huang C., Zhang F., Xu Z., Wei J. The Diverse Gait Dataset: Gait segmentation using inertial sensors for pedestrian localization with different genders, heights and walking speeds. Sensors. 2022;22:1678. doi: 10.3390/s22041678. PubMed DOI PMC
Barth J., Oberndorfer C., Pasluosta C., Schülein S., Gassner H., Reinfelder S., Kugler P., Schuldhaus D., Winkler J., Klucken J., et al. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors. 2015;15:6419–6440. doi: 10.3390/s150306419. PubMed DOI PMC
Rampp A., Barth J., Schülein S., Gaßmann K.G., Klucken J., Eskofier B.M. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2014;62:1089–1097. doi: 10.1109/TBME.2014.2368211. PubMed DOI
Kluge F., Gaßner H., Hannink J., Pasluosta C., Klucken J., Eskofier B.M. Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors. 2017;17:1522. doi: 10.3390/s17071522. PubMed DOI PMC
Murata Y., Kaji K., Hiroi K., Kawaguchi N. Pedestrian dead reckoning based on human activity sensing knowledge; Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication; Seattle, WA, USA. 13–17 September 2014; pp. 797–806.
Chen C., Zhao P., Lu C.X., Wang W., Markham A., Trigoni N. Oxiod: The dataset for deep inertial odometry. arXiv. 20181809.07491
Yan H., Shan Q., Furukawa Y. RIDI: Robust IMU double integration; Proceedings of the European Conference on Computer Vision (ECCV); Munich, Germany. 8–14 September 2018; pp. 621–636.
Khandelwal S., Wickström N. Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016;24:1363–1372. doi: 10.1109/TNSRE.2016.2536278. PubMed DOI
Kingma D.P., Mohamed S., Rezende D.J., Welling M. Advances in Neural Information Processing Systems. MIT Press; Cambridge, MA, USA: 2014. Semi-supervised learning with deep generative models; pp. 3581–3589.
Kingma D.P., Welling M. Auto-encoding variational bayes. arXiv. 20131312.6114
Shi X., Chen Z., Wang H., Yeung D.Y., Wong W.K., Woo W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting; Proceedings of the 28th International Conference on Neural Information Processing Systems; Montreal, QC, Canada. 7–12 December 2015; pp. 802–810.
Singh S.P., Sharma M.K., Lay-Ekuakille A., Gangwar D., Gupta S. Deep ConvLSTM with self-attention for human activity decoding using wearable sensors. IEEE Sens. J. 2020;21:8575–8582. doi: 10.1109/JSEN.2020.3045135. DOI
Friedman J., Hastie T., Tibshirani R. The Elements of Statistical Learning. Volume 1 Springer; Berlin/Heidelberg, Germany: 2001. (Springer Series in Statistics).
Wang J., Perez L. Convolutional Neural Networks for Visual Recognition. Stanford University; Stanford, CA, USA: 2017. The effectiveness of data augmentation in image classification using deep learning.
Blecha T., Soukup R., Kaspar P., Hamacek A., Reboun J. Smart firefighter protective suit-functional blocks and technologies; Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE); Kuala Lumpur, Malaysia. 15–17 August 2018; p. C4.
Erhan D., Courville A., Bengio Y., Vincent P. Why does unsupervised pre-training help deep learning?; Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; Sardinia, Italy. 13–15 May 2010; pp. 201–208.