Analysis of early neonatal case fatality rate among newborns with congenital hydrocephalus, a 2000-2014 multi-country registry-based study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem, Research Support, N.I.H., Intramural
Grantová podpora
CC999999
Intramural CDC HHS - United States
PubMed
35633200
PubMed Central
PMC9288486
DOI
10.1002/bdr2.2045
Knihovny.cz E-zdroje
- Klíčová slova
- ETOPFA, birth defects, case fatality rate, congenital hydrocephalus, early neonatal deaths, population surveillance, prevalence, trends,
- MeSH
- hydrocefalus * epidemiologie MeSH
- lidé MeSH
- narození mrtvého plodu * epidemiologie MeSH
- narození živého dítěte epidemiologie MeSH
- novorozenec MeSH
- prevalence MeSH
- registrace MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: Congenital hydrocephalus (CH) comprises a heterogeneous group of birth anomalies with a wide-ranging prevalence across geographic regions and registry type. The aim of the present study was to analyze the early neonatal case fatality rate (CFR) and total birth prevalence of newborns diagnosed with CH. METHODS: Data were provided by 25 registries from four continents participating in the International Clearinghouse for Birth Defects Surveillance and Research (ICBDSR) on births ascertained between 2000 and 2014. Two CH rates were calculated using a Poisson distribution: early neonatal CFR (death within 7 days) per 100 liveborn CH cases (CFR) and total birth prevalence rate (BPR) per 10,000 births (including live births and stillbirths) (BPR). Heterogeneity between registries was calculated using a meta-analysis approach with random effects. Temporal trends in CFR and BPR within registries were evaluated through Poisson regression modeling. RESULTS: A total of 13,112 CH cases among 19,293,280 total births were analyzed. The early neonatal CFR was 5.9 per 100 liveborn cases, 95% confidence interval (CI): 5.4-6.8. The CFR among syndromic cases was 2.7 times (95% CI: 2.2-3.3) higher than among non-syndromic cases (10.4% [95% CI: 9.3-11.7] and 4.4% [95% CI: 3.7-5.2], respectively). The total BPR was 6.8 per 10,000 births (95% CI: 6.7-6.9). Stratified by elective termination of pregnancy for fetal anomalies (ETOPFA), region and system, higher CFR were observed alongside higher BPR rates. The early neonatal CFR and total BPR did not show temporal variation, with the exception of a CFR decrease in one registry. CONCLUSIONS: Findings of early neonatal CFR and total BPR were highly heterogeneous among registries participating in ICBDSR. Most registries with higher CFR also had higher BPR. Differences were attributable to type of registry (hospital-based vs. population-based), ETOPFA (allowed yes or no) and geographical regions. These findings contribute to the understanding of regional differences of CH occurrence and early neonatal deaths.
CARIS The Congenital Anomaly Register for Wales Singleton Hospital Swansea Wales UK
Department of Epidemiology Emory University Rollins School of Public Health Atlanta Georgia USA
Department of Medical Genetics Thomayer University Hospital Prague Czech Republic
Department of Neonatology Soroka Medical Center Beer Sheva Israel
ECLAMC Centro de Educación Médica e Investigaciones Clínicas Buenos Aires Argentina
Health Services Management Research Centre Tabriz University of Medical Sciences Tabriz Iran
Human Genetics Institute Pontificia Universidad Javeriana Bogotá Colombia
Malta Congenital Anomalies Registry Directorate for Health Information and Research Tal Pietà Malta
National Board of Health and Welfare Stockholm Sweden
Omni Net for Children International Charitable Fund Rivne Ukraine
Regional Register Congenital Malformation Maule Health Service Maule Chile
Slovak Teratologic Information Centre Slovak Medical University Bratislava Slovak Republic
Zobrazit více v PubMed
Alijahan R, Mirzarahimi M, Ahmadi Hadi P, & Hazrati S (2013). Prevalence of congenital abnormalities and its related risk factors in Ardabil, Iran, 2011. The Iranian Journal of Obstetrics, Gynecology and Infertility, 16(54), 16–25. 10.22038/ijogi.2013.1086 DOI
Bakker MK, Kancherla V, Canfield MA, Bermejo-Sanchez E, Cragan JD, Dastgiri S, … Mastroiacovo P (2019). Analysis of mortality among neonates and children with spina bifida: An international registry-based study, 2001–2012. Paediatric and Perinatal Epidemiology, 33(6), 436–448. 10.1111/ppe.12589 PubMed DOI PMC
Best KE, Rankin J, Dolk H, Loane M, Haeusler M, Nelen V, … Khoshnood B (2020). Multilevel analyses of related public health indicators: The European Surveillance of Congenital Anomalies (EUROCAT) Public Health Indicators. Paediatric and Perinatal Epidemiology, 34(2), 122–129. 10.1111/ppe.12655 PubMed DOI PMC
Bradburn M, Deeks J, & Altman DG (1998). metan—An alternative meta-analysis command. Stata Techicall Bulletin, 44, 4–15.
Daliri S, Safarpour H, Bazyar J, Sayehmiri K, Karimi A, & Anvary R (2019). The relationship between some neonatal and maternal factors during pregnancy with the prevalence of congenital malformations in Iran: A systematic review and meta-analysis. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 32(21), 3666–3674. 10.1080/14767058.2018.1465917 PubMed DOI
Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, … Warf BC (2019). Global hydrocephalus epidemiology and incidence: Systematic review and meta-analysis. Journal of Neurosurgery, 130(4), 1065–1079. 10.3171/2017.10.JNS17439 PubMed DOI
Drake JM (2005). Congenital hydrocephalus. Journal of Neurosurgery, 103(2 Suppl), 111, discussion 111–112. 10.3171/ped.2005.103.2.0111 PubMed DOI
Garne E (2001). Perinatal mortality rates can no longer be used for comparing quality of perinatal health services between countries. Paediatric and Perinatal Epidemiology, 15(3), 315–316. 10.1046/j.1365-3016.2001.00356.x PubMed DOI
Garne E, Loane M, Addor M-C, Boyd PA, Barisic I, & Dolk H (2010). Congenital hydrocephalus—Prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. European Journal of Paediatric Neurology, 14(2), 150–155. 10.1016/j.ejpn.2009.03.005 PubMed DOI
Hedayat KM, Shooshtarizadeh P, & Raza M (2006). Therapeutic abortion in Islam: Contemporary views of Muslim Shiite scholars and effect of recent Iranian legislation. Journal of Medical Ethics, 32(11), 652–657. 10.1136/jme.2005.015289 PubMed DOI PMC
Higgins JPT, Thompson SG, Deeks JJ, & Altman DG (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. 10.1136/bmj.327.7414.557 PubMed DOI PMC
Huang Y-H, Wu Q-J, Chen Y-L, Jiang C-Z, Gong T-T, Li J, … Zhou C (2018). Trends in the prevalence of congenital hydrocephalus in 14 cities in Liaoning province, China from 2006 to 2015 in a population-based birth defect registry from the Liaoning Women and Children’s Health Hospital. Oncotarget, 9(18), 14472–14480. 10.18632/oncotarget.24239 PubMed DOI PMC
ICBDSR. (2021). International Clearinghouse for Birth Defects Surveillance and Research. ICBDSR. http://www.icbdsr.org/programme-description/
Isaacs AM, Riva-Cambrin J, Yavin D, Hockley A, Pringsheim TM, Jette N, … Hamilton MG (2018). Age-specific global epidemiology of hydrocephalus: Systematic review, metanalysis and global birth surveillance. PLoS One, 13(10), e0204926. 10.1371/journal.pone.0204926 PubMed DOI PMC
Jeng S, Gupta N, Wrensch M, Zhao S, & Wu YW (2011). Prevalence of congenital hydrocephalus in California, 1991–2000. Pediatric Neurology, 45(2), 67–71. 10.1016/j.pediatrneurol.2011.03.009 PubMed DOI
Kalyvas AV, Kalamatianos T, Pantazi M, Lianos GD, Stranjalis G, & Alexiou GA (2016). Maternal environmental risk factors for congenital hydrocephalus: A systematic review. Neurosurgical Focus, 41(5), E3. 10.3171/2016.8.FOCUS16280 PubMed DOI
Liu J, Jin L, Li Z, Zhang Y, Zhang L, Wang L, & Ren A (2018). Prevalence and trend of isolated and complicated congenital hydrocephalus and preventive effect of folic acid in northern China, 2005–2015. Metabolic Brain Disease, 33(3), 837–842. 10.1007/s11011-017-0172-4 PubMed DOI
Liu S, Joseph KS, Kramer MS, Allen AC, Sauve R, Rusen ID, … Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. (2002). Relationship of prenatal diagnosis and pregnancy termination to overall infant mortality in Canada. JAMA, 287(12), 1561–1567. 10.1001/jama.287.12.1561 PubMed DOI
Mahmoud MZ, Dinar HA, Abdulla AA, Babikir E, & Sulieman A (2014). Study of the association between the incidences of congenital anomalies and hydrocephalus in Sudanese fetuses. Global Journal of Health Science, 6(5), 1–8. 10.5539/gjhs.v6n5p1 PubMed DOI PMC
Morota N (2019). Prenatal hydrocephalus: Prenatal counseling, post-natal treatment, outcome. In Cinalli G, Ozek MM, & Sainte-Rose C (Eds.), Pediatric hydrocephalus (pp. 1–19). Cham: Springer International Publishing. 10.1007/978-3-319-31889-9_48-1 DOI
Munch TN, Rasmussen M-LH, Wohlfahrt J, Juhler M, & Melbye M (2014). Risk factors for congenital hydrocephalus: A nationwide, register-based, cohort study. Journal of Neurology, Neurosurgery, and Psychiatry, 85(11), 1253–1259. 10.1136/jnnp-2013-306941 PubMed DOI
Nembhard WN, Bergman JEH, Politis MD, Arteaga-Vázquez J, Bermejo-Sánchez E, Canfield MA, … Mastroiacovo P (2020). A multi-country study of prevalence and early childhood mortality among children with omphalocele. Birth Defects Research, 112, 1787–1801. 10.1002/bdr2.1822 PubMed DOI PMC
Politis MD, Bermejo-Sánchez E, Canfield MA, Contiero P, Cragan JD, Dastgiri S, … International Clearinghouse for Birth Defects Surveillance and Research. (2020). Prevalence and mortality in children with congenital diaphragmatic hernia: A multi-country study. Annals of Epidemiology, 56, 61–69.e3. 10.1016/j.annepidem.2020.11.007 PubMed DOI PMC
Rekate HL (2018). Classification of hydrocephalus. In Cinalli G, Ozek MM, & Sainte-Rose C (Eds.), Pediatric hydrocephalus (pp. 1–17). Cham: Springer International Publishing. 10.1007/978-3-319-31889-9_45-1 DOI
Rittler M, Liascovich R, López-Camelo J, & Castilla EE (2001). Parental consanguinity in specific types of congenital anomalies. American Journal of Medical Genetics, 102(1), 36–43. PubMed
Rogers SC, & Morris M (1971). Infant mortality from spina bifida, congenital hydrocephalus, monstrosity, and congenital diseases of the cardiovascular system in England and Wales. Annals of Human Genetics, 34(3), 295–305. PubMed
Saadat M, Ansari-Lari M, & Farhud DD (2004). Consanguineous marriage in Iran. Annals of Human Biology, 31(2), 263–269. 10.1080/03014460310001652211 PubMed DOI
Scala C, Familiari A, Pinas A, Papageorghiou AT, Bhide A, Thilaganathan B, & Khalil A (2017). Perinatal and long-term outcomes in fetuses diagnosed with isolated unilateral ventriculomegaly: Systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 49(4), 450–459. 10.1002/uog.15943 PubMed DOI
Shaheen R, Sebai MA, Patel N, Ewida N, Kurdi W, Altweijri I, … Alkuraya FS (2017). The genetic landscape of familial congenital hydrocephalus. Annals of Neurology, 81(6), 890–897. 10.1002/ana.24964 PubMed DOI
Walsh S, Donnan J, Morrissey A, Sikora L, Bowen S, Collins K, & MacDonald D (2017). A systematic review of the risks factors associated with the onset and natural progression of hydrocephalus. Neurotoxicology, 61, 33–45. 10.1016/j.neuro.2016.03.012 PubMed DOI
Zarante I, Hurtado-Villa P, Walani SR, Kancherla V, López Camelo J, Giugliani R, … Durán P (2019). A consensus statement on birth defects surveillance, prevention, and care in Latin America and the Caribbean. Revista Panamericana de Salud Pública, 43, e2. 10.26633/RPSP.2019.2 PubMed DOI PMC
Zupan J, & Åhman E (2006). Neonatal and perinatal mortality: Country, regional and global estimates. Geneva: World Health Organization.