Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems

. 2022 Jun 07 ; 119 (23) : e2122580119. [epub] 20220602

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35653559

Haplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes). However, why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis posits that X-linked genes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis holds that conflict between genes drives genetic system turnover; under this model, X-linked genes could promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and genetic transmission. We studied lineages where we can distinguish these hypotheses: species with germline PGE that retain an XX/X0 sex determination system (gPGE+X). Because evolving PGE in these cases involves changes in transmission without increases in male hemizygosity, a high degree of X linkage in these systems is predicted by the Intragenomic Conflict Hypothesis but not the Haploid Viability Hypothesis. To quantify the degree of X linkage, we sequenced and compared 7 gPGE+X species’ genomes with 11 related species with typical XX/XY or XX/X0 genetic systems, representing three transitions to gPGE. We find highly increased X linkage in both modern and ancestral genomes of gPGE+X species compared to non-gPGE relatives and recover a significant positive correlation between percent X linkage and the evolution of gPGE. These empirical results substantiate longstanding proposals for a role for intragenomic conflict in the evolution of genetic systems such as HD/PGE.

Zobrazit více v PubMed

Ashman T. L., et al. ; Tree of Sex Consortium, Tree of sSex: A database of sexual systems. Sci. Data 1, 140015 (2014). PubMed PMC

Brown S. W., Automatic frequency response in the evolution of male haploidy and other coccid chromosome systems. Genetics 49, 797–817 (1964). PubMed PMC

Hamilton W. D., Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156, 477–488 (1967). PubMed

Hartl D. L., Brown S. W., The origin of male haploid genetic systems and their expected sex ratio. Theor. Popul. Biol. 1, 165–190 (1970). PubMed

Bull J. J., An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity 43, 361–381 (1979).

Normark B. B., Perspective: Maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis. Evolution 60, 631–642 (2006). PubMed

Gardner A., Ross L., Mating ecology explains patterns of genome elimination. Ecol. Lett. 17, 1602–1612 (2014). PubMed PMC

Blackmon H., Hardy N. B., Ross L., The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability. Evolution 69, 2971–2978 (2015). PubMed PMC

Goldstein D. B., Deleterious mutations and the evolution of male haploidy. Am. Soc. Nat. 144, 176–183 (1994).

Normark B. B., Haplodiploidy as an outcome of coevolution between male-killing cytoplasmic elements and their hosts. Evolution 58, 790–798 (2004). PubMed

Haig D., The evolution of unusual chromosomal systems in sciarid flies: Intragenomic conflict and the sex ratio. J. Evol. Biol. 6, 249–261 (1993).

Werren J. H., Beukeboom L. W., Sex determination, sex ratios, and genetic conflict. Annu. Rev. Ecol. Syst. 29, 233–261 (1998).

Normark B. B., Ross L., Genetic conflict, kin and the origins of novel genetic systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130364 (2014). PubMed PMC

Burt A., Trivers R., Genes in Conflict: The Biology of Selfish Genetic Elements (Harvard University Press, 2006).

Bachtrog D., The Y chromosome as a battleground for intragenomic conflict. Trends Genet. 36, 510–522 (2020). PubMed PMC

Mank J. E., Hosken D. J., Wedell N., Conflict on the sex chromosomes: Cause, effect, and complexity. Cold Spring Harb. Perspect. Biol. 6, a017715 (2014). PubMed PMC

Haig D., The evolution of unusual chromosomal systems in coccoids: Extraordinary sex ratios revisited. J. Evol. Biol. 6, 69–77 (1993).

Ross L., Pen I., Shuker D. M., Genomic conflict in scale insects: The causes and consequences of bizarre genetic systems. Biol. Rev. Camb. Philos. Soc. 85, 807–828 (2010). PubMed

Metz C. W., Chromosome Behavior, Inheritance and Sex Determination in Sciara (American Naturalist, 1938).

White M. J. D., Cytological Studies on Gall Midges (Cecidomyidae) (The University of Texas, 1950).

Dallai R., Fanciulli P. P., Frati F., Aberrant spermatogenesis and the peculiar mechanism of sex determination in Symphypleonan Collembola (Insecta). J. Hered. 91, 351–358 (2000). PubMed

de Souza Amorim D., et al. , Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. Sci. Rep. 12, 1734 (2022). PubMed PMC

Hebert P. D. N., et al. , Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150333 (2016). PubMed PMC

Ševčík J., Hippa H., Burdíková N., Just a fragment of undescribed diversity: Twenty new oriental and palearctic species of Sciaroidea (Diptera), including DNA sequence data and two new fossil genera. Insects 13, 19 (2021). PubMed PMC

Metz C. W., Chromosome behavior, inheritance and sex determination in Sciara. Am. Nat. 72, 485–520 (1938).

Jaron K. S., Hodson C. N., Ellers J., Baird S. J. E., Ross L., Genomic evidence of paternal genome elimination in globular springtails. bioRxiv [Preprint] (2021) 2021.11.12.468426 (Accessed 3 April 2022). PubMed PMC

Gallun R. L., Hatchett J. H., Genetic evidence of elimination of chromosomes in the Hessian fly. Ann. Entomol. Soc. Am. 62, 1095–1101 (1969).

Stuart J. J., Hatchett J. H., Cytogenetics of the Hessian fly: I. Mitotic karyotype analysis and polytene chromosome correlations. J. Hered. 79, 184–189 (1988). PubMed

Stuart J. J., Hatchett J. H., Cytogenetics of the Hessian fly: II. Inheritance and behavior of somatic and germ-line-limited chromosomes. J. Hered. 79, 190–199 (1988). PubMed

Goday C., Esteban M. R., Chromosome elimination in Sciarid flies. BioEssays 23, 242–250 (2001). PubMed

Muller H., “Bearings of the ‘Drosophila’ work on systematics” in The New Systematics, Huxley J., Ed. (Clarendon Press, 1940), pp. 185–268.

Sved J. A., et al. , Extraordinary conservation of entire chromosomes in insects over long evolutionary periods. Evolution 70, 229–234 (2016). PubMed

Vicoso B., Bachtrog D., Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 13, e1002078 (2015). PubMed PMC

Richards S., Stuart J. J., BCM-HGSC Hessian Fly Genome Project. Baylor Coll. Med. Hum. Genome Seq. Cent. https://www.hgsc.bcm.edu/arthropods/hessian-fly-genome-project. (Accessed 21 June 2018).

Aggarwal R., et al. , A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes. BMC Genomics 10, 293 (2009). PubMed PMC

Ives A. R., T. Garland, Jr, “Phylogenetic regression for binary dependent variables” in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology, Garamszegi L. Z., Ed. 2014), pp. 231–261.

Ives A. R., T. Garland, Jr, Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010). PubMed

Meisel R. P., Delclos P. J., Wexler J. R., The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence. BMC Biol. 17, 100 (2019). PubMed PMC

Schaeffer S. W., et al. , Polytene chromosomal maps of 11 Drosophila species: The order of genomic scaffolds inferred from genetic and physical maps. Genetics 179, 1601–1655 (2008). PubMed PMC

Vicoso B., Bachtrog D., Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature 499, 332–335 (2013). PubMed PMC

Keller Valsecchi C. I., Marois E., Basilicata M. F., Georgiev P., Akhtar A., Distinct mechanisms mediate X chromosome dosage compensation in Anopheles and Drosophila. Life Sci. Alliance 4, e202000996 (2021). PubMed PMC

Zdobnov E. M., et al. , Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298, 149–159 (2002). PubMed

Li D., et al. , MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016). PubMed

Bankevich A., et al. , SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC

Laetsch D. R., Blaxter M. L., BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000 Res. 6, 1287 (2017).

Hoff K. J., Lomsadze A., Borodovsky M., Stanke M., Whole-genome annotation with BRAKER. Methods Mol. Biol. 1962, 65–95 (2019). PubMed PMC

Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M., BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs (Bioinforma, 2015). PubMed

Marygold S. J., Crosby M. A., Goodman J. L., FlyBase Consortium, Using FlyBase, a database of Drosophila genes and genomes. Methods Mol. Biol. 1478, 1–31 (2016). PubMed PMC

Hadfield J. D., Nakagawa S., General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010). PubMed

si Tung Ho L., Ané C., A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014). PubMed

Ševčík J., et al. , Molecular phylogeny of the megadiverse insect infraorder Bibionomorpha sensu lato (Diptera). PeerJ 4, e2563 (2016). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...