Optically active polyimides with different thermal histories of their preparation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA20-06264S
Grant Agency of the Czech Republic
PubMed
35656848
DOI
10.1002/chir.23476
Knihovny.cz E-zdroje
- Klíčová slova
- chiral selector, circular dichroism, optical activity, polarimetry, polyimide,
- MeSH
- anhydridy * chemie MeSH
- cirkulární dichroismus MeSH
- imidy * chemie MeSH
- stereoizomerie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anhydridy * MeSH
- imidy * MeSH
Optically active linear polyimides and hyperbranched poly (amic acid-imide) were prepared by using procedures varying in particular in the maximum temperature employed in their synthesis. The two types of linear polyimides were based on 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 1,2-diaminocylohexane enantiomers or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 2,2'-diamino-1,1'-binaphthalene enantiomers. The amine-terminated hyperbranched poly (amic acid-imide) was prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4',4″-triaminotriphenylmethane, and its end groups were modified with the chiral selectors N-acetyl-D-phenylalanine or N-acetyl-L-phenylalanine. The final structure of the products was analyzed by IR spectroscopy, and their optical activity was evaluated and confirmed by polarimetry or circular dichroism.
Department of Organic Chemistry University of Chemistry and Technology Prague 6 Czech Republic
Institute of Chemical Process Fundamentals of the CAS Prague 6 Czech Republic
Zobrazit více v PubMed
Xie R, Chu L-Y, Deng J-G. Membranes and membrane processes for chiral resolution. Chem Soc Rev. 2008;37(6):1243-1263. doi:10.1039/b713350b
Yoshikawa M, Tharpa K, Dima S-O. Molecularly imprinted membranes: past, present, and future. Chem Rev. 2016;116(19) 11500-11528. doi:10.1021/acs.chemrev.6b00098
Fernandes C, Tiritan ME, Pinto MMM. Chiral separation in preparative scale: A brief overview of membranes as tools for enantiomeric separation. Symmetry. 2017;9(10):206. doi:10.3390/sym9100206
Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S. Advanced polyimide materials: syntheses, properties and applications. Prog Polym Sci. 2012;37(7):907-974. doi:10.1016/j.progpolymsci.2012.02.005
Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev. 2009;109(11):5924-5973. doi:10.1021/cr900068q
Vedovello P, Paranhos CM, Fernandes C, Tiritan ME. Chiral polymeric membranes: recent applications and trends. Sep Purif Technol. 2022;280:119800. doi:10.1016/j.seppur.2021.119800
Kang C, Yan J, Gao L. Synthesis, structure and properties of chiral polyimides. Prog Chem. 2015;27(1):59-69.
Ritter N, Senkovska I, Kaskel S, Weber J. Towards chiral microporous soluble polymers-binaphthalene-based polyimides. Macromol Rapid Commun. 2011;32(5):438-443. doi:10.1002/marc.201000714
Dautel OJ, Wantz G, Flot D, et al. Confined photoactive substrates on a chiral scaffold: the design of an electroluminescent polyimide as material for PLED. J Mater Chem. 2005;15(41):4446-4452. doi:10.1039/b503284a
Wu Z, Han B, Zhang C, et al. Novel soluble and optically active polyimides containing axially asymmetric 9,9′-spirobifluorene units: synthesis, thermal, optical and chiral properties. Polymer. 2012;53(25):5706-5716. doi:10.1016/j.polymer.2012.10.024
Zahmatkesh S, Vakili MR. Synthesis and characterization of new optically active poly (ethyl L-lysinamide)s and poly (ethyl L-lysinimide)s. J Amino Acids. 2010;2010:910906. doi:10.4061/2010/910906
Sukchol K, Thongyai S, Praserthdam P. Preparation and characterization of novel polyimide with chiral side chain for twist nematic liquid crystal display. J Appl Polym Sci. 2011;120(6):3265-3277. doi:10.1002/app.33529
Patel DC, Woods RM, Breitbach ZS, Berthod A, Armstrong DW. Thermal racemization of biaryl atropisomers. Tetrahedron Asymmetry. 2017;28(11):1557-1561. doi:10.1016/j.tetasy.2017.09.006
Yamamoto Y, Sakamoto A, Nishioka T, Oda J, Fukazawa Y. Asymmetric synthesis of 5- and 6-membered lactones from cyclic substrates bearing a C2-chiral auxiliary. J Org Chem. 1991;56(3):1112-1119. doi:10.1021/jo00003a038
Isezaki J, Yoshikawa M, Li N, Robertson GP, Guiver MD. Polysulfones with phenylalanine derivatives as chiral selectors-membranes for chiral separation. J Membr Separ Technol. 2012;1(1):1-8.
Mizushima H, Yoshikawa M, Li N, Robertson GP, Guiver MD. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur Polym J. 2012;48(10):1717-1725. doi:10.1016/j.eurpolymj.2012.07.003
Husk GR, Cassidy PE, Gebert KL. Synthesis and characterization of a series of polyimides derived from 4,4′-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[1,3-isobenzofuranedione]. Macromolecules. 1988;21(5):1234-1238. doi:10.1021/ma00183a009
Janegová K, Sysel P, Kulhánková H, Perfilov VA, Bernauer M, Fíla V. Poly (imide-siloxane) films with controlled thickness. J Appl Polym Sci. 2021;138(8):49893. doi:10.1002/app.49893
Langeveld-Voss BMW, Beljone D, Shuai Z, et al. Investigation of exciton coupling in oligothiophenes by circular dichroism spectroscopy. Adv Mater. 1998;10(16):1343-1347. doi:10.1002/(SICI)1521-4095(199811)10:16<1343::AID-ADMA1343>3.0.CO;2-Z
Mi Q, Gao L, Ding M. Optically active aromatic polyimides having axially dissymmetric 1,1′-binaphthalene-2,2′-diyl units. Macromolecules. 1996;29(17):5758-5759. doi:10.1021/ma9606667
Castro-Munoz R, Martin-Gil V, Ahmad MZ, Fíla V. Matrimid®5218 in preparation of membranes for gas separation: current state-of-the-art. Chem Eng Commun. 2018;205(2):161-196. doi:10.1080/00986445.2017.1378647
Kim YJ, Glass TE, Lyle GD, McGrath JE. Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions. Macromolecules. 1993;26(6):1344-1358. doi:10.1021/ma00058a024
Shockravi A, Javadi A, Abouzari-Loft E. Binaphthyl-based macromolecules: a review. RSC Adv. 2013;3(19):6717-6746. doi:10.1039/c3ra22418j
Holakovsky R, Marz M, Cibulka R. Urea derivatives based on 1,1′-binaphthalene skeleton as chiral solvating agents for sulfoxides. Tetrahedron Asymmetry. 2015;26(23):1328-1334. doi:10.1016/j.tetasy.2015.10.011
Zhi J, Guan Y, Cui J, et al. Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. J Polym Sci: Part A: Polym Chem. 2009;47(23):2408-2421. doi:10.1002/pola.23331
Friess K, Sysel P, Minko E, et al. Comparison of transport properties of hyperbranched and linear polyimides. Desal Water Treat. 2010;14(1-3):165-169. doi:10.5004/dwt.2010.1022
Rybak A, Grzywna ZJ, Sysel P. Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation. Sep Purif Technol. 2013;118:424-431.
Sysel P, Maly D, Vysohlid J, et al. Polyimides crosslinked with amino group-containing compounds. Polym Eng Sci. 2017;57(12):1367-1373. doi:10.1002/pen.24521
Chan LC, Cox BG. Kinetics of amide formation through carbodiimide/N-hydroxybenzotriazole (HOBt) couplings. J Org Chem. 2007;72(23):8863-8869. doi:10.1021/jo701558y