Inter-individual differences in laboratory rats as revealed by three behavioural tasks
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35672428
PubMed Central
PMC9174278
DOI
10.1038/s41598-022-13288-w
PII: 10.1038/s41598-022-13288-w
Knihovny.cz E-zdroje
- MeSH
- bludiště - učení MeSH
- chování zvířat * MeSH
- individualita * MeSH
- krysa rodu Rattus MeSH
- osobnost MeSH
- potkani Long-Evans MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stable inter-individual differences in behaviour and personality have been studied for several decades now. The aim of this study was to test the repeatability of behaviour of the Long Evans strain of laboratory rats in order to assess their inter-individual differences. Male laboratory rats (n = 36) were tested in a series of tasks (Open field test, Elevated plus maze test, and modified T-maze test) repeated over time to assess their personality traits. To evaluate the temporal stability of the behaviour, we calculated repeatability estimates of the examined traits. We also checked for a link in behavioural traits across these experiments, which would suggest the existence of a behavioural syndrome. We found stable inter-individual differences in behaviour. Interestingly, no link emerged between the tasks we studied and therefore we did not find support for a behavioural syndrome. The lack of behavioural correlations between these experiments suggests that the results derived from these tasks should be interpreted carefully, as these experiments may measure various behavioural axes. Moreover, the animals habituate to the apparatus. Consequently, behaviour in the Open field test and Elevated plus maze test is not fully consistent and repeatable across subsequent trials.
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Bell AM, Hankison SJ, Laskowski KL. The repeatability of behaviour: A meta-analysis. Anim. Behav. 2009;77:771–783. doi: 10.1016/j.anbehav.2008.12.022. PubMed DOI PMC
Gosling SD. From mice to men: What can we learn about persoanlity from animal research? Psychol. Bull. 2001;127:45–86. doi: 10.1037/0033-2909.127.1.45. PubMed DOI
Gosling SD, John OP. Personality dimensions in nonhuman animals: A cross-species review. Curr. Dir. Psychol. Sci. 1999;8:69–75. doi: 10.1111/1467-8721.00017. DOI
Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007;82:291–318. doi: 10.1111/j.1469-185X.2007.00010.x. PubMed DOI
Animal Personalities: Behavior, Physiology, and Evolution. (University of Chicago Press, 2013).
Žampachová B, Landová E, Frynta D. Methods for measuring mammalian personalities: In which animals and how accurately can we quantify it? Lynx. 2017;48:183–198. doi: 10.2478/lynx-2017-0011. DOI
Žampachová B, Kaftanová B, Šimánková H, Landová E, Frynta D. Consistent individual differences in standard exploration tasks in the black rat (Rattus rattus) J. Comp. Psychol. 2017;131:150–162. doi: 10.1037/com0000070. PubMed DOI
Cavigelli SA, Michael KC, Ragan CM. Behavioral, physiological, and health biases in laboratory rodents: A basis for understanding mechanistic links between human personality and health. In: Carere C, Maestripieri D, editors. Animal Personalities: Behavior, Physiology, and Evolution. The University of Chicago Press; 2013. p. 441.
Wang Q, et al. High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: The association with the up-regulation of NMDA receptor binding in the rat brain. Exp. Neurol. 2009;216:132–138. doi: 10.1016/j.expneurol.2008.11.016. PubMed DOI
de Oliveira RMW, et al. Expression of neuronal nitric oxide synthase mRNA in stress-related brain areas after restraint in rats. Neurosci. Lett. 2000;289:123–126. doi: 10.1016/S0304-3940(00)01287-8. PubMed DOI
Jessa M, Nazar M, Bidzinski A, Plaznik A. The effects of repeated administration of diazepam, MK-801 and CGP 37849 on rat behavior in two models of anxiety. Eur. Neuropsychopharmacol. 1996;6:55–61. doi: 10.1016/0924-977X(95)00068-Z. PubMed DOI
Groothuis TGG, Carere C. Avian personalities: Characterization and epigenesis. Neurosci. Biobehav. Rev. 2005;29:137–150. doi: 10.1016/j.neubiorev.2004.06.010. PubMed DOI
Digman JM. Personality structure: Emergence of the five-factor model. Annu. Rev. Psychol. 1990;41:417–440. doi: 10.1146/annurev.ps.41.020190.002221. DOI
Eysenck HJ. Four ways five factors are not basic. Pers. Individ. Dif. 1992;13:667–673. doi: 10.1016/0191-8869(92)90237-J. DOI
Costa PTJ, McCrae RR. Four ways five factors are basic. Pers. Individ. Dif. 1992;13:653–665. doi: 10.1016/0191-8869(92)90236-I. DOI
Réale D, et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:4051–4063. doi: 10.1098/rstb.2010.0208. PubMed DOI PMC
Sih A, Bell A, Johnson JC. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004;19:372–378. doi: 10.1016/j.tree.2004.04.009. PubMed DOI
Biro PA, Stamps JA. Using repeatability to study physiological and behavioural traits: Ignore time-related change at your peril. Anim. Behav. 2015;105:223–230. doi: 10.1016/j.anbehav.2015.04.008. DOI
Niemelä PT, Vainikka A, Forsman JT, Loukola OJ, Kortet R. How does variation in the environment and individual cognition explain the existence of consistent behavioral differences? Ecol. Evol. 2012;3:457–464. doi: 10.1002/ece3.451. PubMed DOI PMC
Šimková, O., Frýdlová, P., Žampachová, B., Frynta, D., & Landová, E. Development of behavioural profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality? PLoS ONE12 (2017). PubMed PMC
Stamps JA, Groothuis TGG. Developmental perspectives on personality: Implications for ecological and evolutionary studies of individual differences. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:4029–4041. doi: 10.1098/rstb.2010.0218. PubMed DOI PMC
Lessells CM, Boag PT. Unrepeatable repeatabilities: A common mistake. Auk. 1987;104:116–121. doi: 10.2307/4087240. DOI
Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 2010;85:935–956. PubMed
Perals D, Griffin AS, Bartomeus I, Sol D. Revisiting the open-field test: What does it really tell us about animal personality? Anim. Behav. 2017;123:69–79. doi: 10.1016/j.anbehav.2016.10.006. DOI
Denenberg VH. Open field behavior in the rat: What does it mean? Ann. N. Y. Acad. Sci. 1969;159:852–859. doi: 10.1111/j.1749-6632.1969.tb12983.x. PubMed DOI
van der Staay, F. J., Schuurman, T., van Reenen, C. G., & Korte, S. M. Emotional reactivity and cognitive performance in aversively motivated tasks: A comparison between four rat strains. Behav. Brain Funct.5 (2009). PubMed PMC
Ibáñez MI, Ávila C, Ruipérez MA, Moro M, Ortet G. Temperamental traits in mice (I): Factor structure. Pers. Individ. Dif. 2007;43:255–265. doi: 10.1016/j.paid.2006.11.029. DOI
Bertoglio LJ, Carobrez AP. Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behav. Brain Res. 2000;108:197–203. doi: 10.1016/S0166-4328(99)00148-5. PubMed DOI
Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 2003;463:3–33. doi: 10.1016/S0014-2999(03)01272-X. PubMed DOI
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 2005;29:1193–1205. doi: 10.1016/j.neubiorev.2005.04.017. PubMed DOI
Walsh RN, Cummins RA. The open-field test: A critical review. Psychol. Bull. 1976;83:482–504. doi: 10.1037/0033-2909.83.3.482. PubMed DOI
Fernandes C, File SE. The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol. Biochem. Behav. 1996;54:31–40. doi: 10.1016/0091-3057(95)02171-X. PubMed DOI
Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 2002;26:91–104. doi: 10.1016/S0149-7634(01)00041-0. PubMed DOI
Torrejais JCM, Rosa CCM, Boerngen-Lacerda R, Andreatini R. The elevated T-maze as a measure of two types of defensive reactions: A factor analysis. Brain Res. Bull. 2008;76:376–379. doi: 10.1016/j.brainresbull.2008.03.016. PubMed DOI
Viana MB, Tomaz C, Graeff FG. The elevated T-maze: A new animal model of anxiety and memory. Pharmacol. Biochem. Behavio. 1994;49:549–554. doi: 10.1016/0091-3057(94)90067-1. PubMed DOI
Rodgers RJ, Johnson NJT. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav. 1995;52:297–303. doi: 10.1016/0091-3057(95)00138-M. PubMed DOI
Rodgers RJ, Cao BJ, Dalvi A, Holmes A. Animal models of anxiety: An ethological perspective. Brazilian J. Med. Biol. Res. 1997;30:289–304. doi: 10.1590/S0100-879X1997000300002. PubMed DOI
Castro JE, et al. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology. 2012;37:1209–1223. doi: 10.1016/j.psyneuen.2011.12.014. PubMed DOI
Krebs R, Linnenbrink M, Guenther A. Validating standardised personality tests under semi-natural conditions in wild house mice (Mus musculus domesticus) Ethology. 2019;125:761–773. doi: 10.1111/eth.12930. DOI
Rödel HG, Meyer S. Early development influences ontogeny of personality types in young laboratory rats. Dev. Psychobiol. 2011;53:601–613. doi: 10.1002/dev.20522. PubMed DOI
Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002;134:49–57. doi: 10.1016/S0166-4328(01)00452-1. PubMed DOI
Ribeiro A, Ferra-de-Paula V, Pinheiro ML, Palermo-Neto J. Dose-response effects of systemic anandamide administration in mice sequentially submitted to the open field and elevated plus-maze tests. Brazilian J. Med. Biol. Res. 2009;42:556–560. doi: 10.1590/S0100-879X2009000600013. PubMed DOI
Stuchlík, A. et al. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res.62 (2013). PubMed
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116. PubMed DOI PMC
D’Hooge, R. & De Deyn, P. P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 36 (2001). PubMed
Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 1934;18:385–403. doi: 10.1037/h0071444. DOI
Deacon RMJ. Appetitive position discrimination in the T-maze. Nat. Protoc. 2006;1:13–15. doi: 10.1038/nprot.2006.3. PubMed DOI
Locchi F, DallOlio R, Gandolfi O, Rimondini R. Water T-maze, an improved method to assess spatial working memory in rats: Pharmacological validation. Neurosci. Lett. 2007;422:213–216. doi: 10.1016/j.neulet.2007.06.023. PubMed DOI
Zangrossi LIO, Graeff FG. Behavioral validation of the elevated T-maze, a new animal model of anxiety. Brain Res. Bull. 1997;44:1–5. doi: 10.1016/S0361-9230(96)00381-4. PubMed DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2020).
Stoffel MA, Nakagawa S, Schielzeth H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644. doi: 10.1111/2041-210X.12797. DOI
StatSoft Inc. STATISTICA version 9.0., 2009. www.statsoft.com.
IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. IBM Corp.
Hadfield, J. D. 2010 MCMC methods for multi-response generalized linear mixed models: theMCMCglmm R package.J. Stat. Softw.33, 1–22.See http://www.jstatsoft.org/v33/i02/.
Dingemanse NJ, et al. Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J. Anim. Ecol. 2012;81:116–126. doi: 10.1111/j.1365-2656.2011.01877.x. PubMed DOI
Dingemanse NJ, Dochtermann N, Wright J. A method for exploring the structure of behavioural syndromes to allow formal comparison within and between data sets. Anim. Behav. 2010;79:439–450. doi: 10.1016/j.anbehav.2009.11.024. DOI
Mutzel A, Dingemanse NJ, Araya-ajoy YG, Kempenaers B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B Biol. Sci. 2013;280:20131019. doi: 10.1098/rspb.2013.1019. PubMed DOI PMC
Dingemanse NJ, Dochtermann NA. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. Anim. Ecol. 2013 doi: 10.1111/1365-2656.12013. PubMed DOI
de Boer SF, van der Vegt BJ, Koolhaas JM. Individual variation in aggression of feral rodent strains: A standard for the genetics of aggression and violence? Behav. Genet. 2003;33:485–501. doi: 10.1023/A:1025766415159. PubMed DOI
Modlinska K, Stryjek R, Pisula W. Food neophobia in wild and laboratory rats (multi-strain comparison) Behav. Processes. 2015;113:41–50. doi: 10.1016/j.beproc.2014.12.005. PubMed DOI
Pisula W, Modlinska K, Chrzanowska A, Stryjek R. Behavioural differences in Brown-Norway and wild-type rats maintained in standard or enriched environment in response to novelty in a familiarised environment. Psychology. 2015;6:251–262. doi: 10.4236/psych.2015.63025. DOI
Stryjek R, Modlińska K, Pisula W. Species specific behavioural patterns (digging and swimming) and reaction to novel objects in wild type, Wistar, Sprague-Dawley and Brown Norway rats. PLoS ONE. 2012;7:e40642. doi: 10.1371/journal.pone.0040642. PubMed DOI PMC
Brown GR, Nemes C. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia? Behav. Processes. 2008;78:442–448. doi: 10.1016/j.beproc.2008.02.019. PubMed DOI PMC
Ossenkopp K-P, Sorenson L, Mazmanian DS. Factor analysis of open-field behavior in the rat (Rattus norvegicus): Application of the three-way PARAFAC model to a longitudinal data set. Behav. Processes. 1994;31:129–144. doi: 10.1016/0376-6357(94)90001-9. PubMed DOI
Poucet B, Durup M, Thinus-Blanc C. Short-term and long-term habituation of exploration in rats, hamsters and gerbils. Behav. Processes. 1988;16:203–211. doi: 10.1016/0376-6357(88)90040-X. PubMed DOI
Bell AM, Stamps JA. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim. Behav. 2004;68:1339–1348. doi: 10.1016/j.anbehav.2004.05.007. DOI
Archer J. Tests for emotionality in rats and mice: A review. Anim. Behav. 1973;21:205–235. doi: 10.1016/S0003-3472(73)80065-X. PubMed DOI
Martin JGA, Réale D. Temperament, risk assessment and habituation to novelty in eastern chipmunks, Tamias striatus. Anim. Behav. 2008;75:309–318. doi: 10.1016/j.anbehav.2007.05.026. DOI
Ramos A, Berton O, Mormède P, Chaouloff F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res. 1997;85:57–69. doi: 10.1016/S0166-4328(96)00164-7. PubMed DOI
Rodgers RJ, Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 1997;21:801–810. doi: 10.1016/S0149-7634(96)00058-9. PubMed DOI
Vevera J, et al. The effect of prolonged simvastatin application on serotonin uptake, membrane microviscosity and behavioral changes in the animal model. Physiol. Behav. 2016;158:112–120. doi: 10.1016/j.physbeh.2016.02.029. PubMed DOI