Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
085/2022/Z
University of South Bohemia in České Budějovice
No. RO0418
Ministry of Agriculture of the Czech Republic
No. 322
the Ministry of Regional Development of the Czech Republic
PubMed
35684196
PubMed Central
PMC9183146
DOI
10.3390/plants11111424
PII: plants11111424
Knihovny.cz E-zdroje
- Klíčová slova
- nutrient storage, plant growth, sustainable agriculture, waste management,
- Publikační typ
- časopisecké články MeSH
Understanding the structural differences between feedstocks is critical for biochar effectiveness in plant growth. To examine the efficiency of biochars with unique physiological structures in a cadmium (Cd)-polluted soil, rice and maize as C3 and C4 plants, as well as biochar generated from their residues, defined as BC3 and BC4, were utilized. The experiment involved a control and a Cd-polluted soil (20 mg kg-1) without biochar application, and applications of each type of biochar (20 t ha-1) on Cd-polluted or unpolluted soil. In rice and maize fields, BC3 application led to the highest value of cation exchange capacity (CEC), with increases of 162% and 115%, respectively, over the control, while CEC increased by 110% and 71% with BC4 in the rice and maize field, respectively. As compared to the control, BC3 and BC4 dramatically enhanced the photosynthetic rate (Pn) of rice by 116% and 80%, respectively, and maize by 67% and 31%. BC3 and BC4 significantly decreased the Cd transfer coefficient in rice by 54% and 30% and in maize by 45% and 21%. Overall, BC3 is preferred over BC4 for establishing rice and maize in Cd-polluted soil, as it has a lower C/N ratio, a considerably higher surface area, and more notable alkaline features such as a higher CEC and nutrient storage.
Zobrazit více v PubMed
Liu Z., Demisie W., Zhang M. Simulated degradation of biochar and its potential environmental implications. Environ. Pollut. 2013;179:146–152. doi: 10.1016/j.envpol.2013.04.030. PubMed DOI
Ghorbani M., Amirahmadi E., Zamanian K. In-situ biochar production associated with paddies: Direct involvement of farmers in greenhouse gases reduction policies besides increasing nutrients availability and rice production. Land Degrad. Dev. 2021;32:3893–3904. doi: 10.1002/ldr.4006. DOI
Liu X., Zhou J., Chi Z., Zheng J., Li L., Zhang X., Zheng J., Cheng K., Bian R., Pan G. Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. Catena. 2019;179:20–28. doi: 10.1016/j.catena.2019.03.033. DOI
Tomczyk A., Sokołowska Z., Boguta P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020;19:191–215. doi: 10.1007/s11157-020-09523-3. DOI
Farrar M.B., Wallace H.M., Xu C.-Y., Nguyen T.T.N., Tavakkoli E., Joseph S., Bai S.H. Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling. J. Soils Sediments. 2019;19:668–682. doi: 10.1007/s11368-018-2061-9. DOI
Nguyen T.T.N., Wallace H.M., Xu C.-Y., Xu Z., Farrar M.B., Joseph S., Van Zwieten L., Bai S.H. Short-term effects of organo-mineral biochar and organic fertilisers on nitrogen cycling, plant photosynthesis, and nitrogen use efficiency. J. Soils Sediments. 2017;17:2763–2774. doi: 10.1007/s11368-017-1839-5. DOI
Asadi H., Ghorbani M., Rezaei-Rashti M., Abrishamkesh S., Amirahmadi E., Chengrong C., Gorji M. Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Sci. 2021;28:325–343. doi: 10.1016/j.rsci.2021.05.004. DOI
Giles M.E., Daniell T.J., Baggs L. Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community. Soil Biol. Biochem. 2017;106:90–98. doi: 10.1016/j.soilbio.2016.11.028. DOI
Li P., Li B., Seneweera S., Zong Y., Li F.Y., Han Y., Hao X. Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species. Plant Sci. 2019;285:239–247. doi: 10.1016/j.plantsci.2019.05.006. PubMed DOI
He Y., Yao Y., Ji Y., Deng J., Zhou G., Liu R., Shao J., Zhou L., Li N., Zhou X., et al. Biochar amendment boosts photosynthesis and biomass in C 3 but not C 4 plants: A global synthesis. GCB Bioenergy. 2020;12:605–617. doi: 10.1111/gcbb.12720. DOI
Gorovtsov A.V., Minkina T.M., Mandzhieva S.S., Perelomov L.V., Soja G., Zamulina I.V., Rajput V.D., Sushkova S.N., Mohan D., Yao J. The mechanisms of biochar interactions with microorganisms in soil. Environ. Geochem. Health. 2020;42:2495–2518. doi: 10.1007/s10653-019-00412-5. PubMed DOI
Amirahmadi E., Hojjati S.M., Kammann C., Ghorbani M., Biparva P. The Potential Effectiveness of Biochar Application to Reduce Soil Cd Bioavailability and Encourage Oak Seedling Growth. Appl. Sci. 2020;10:3410. doi: 10.3390/app10103410. DOI
Oni B.A., Oziegbe O., Olawole O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019;64:222–236. doi: 10.1016/j.aoas.2019.12.006. DOI
Haider F.U., Liqun C., Coulter J.A., Cheema S.A., Wu J., Zhang R., Wenjun M., Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021;211:111887. doi: 10.1016/j.ecoenv.2020.111887. PubMed DOI
Ahmad M., Ahmad M., Usman A.R.A., Al-Faraj A.S., Abduljabbar A., Ok Y.S., Al-Wabel M.I. Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health. 2019;41:1687–1704. doi: 10.1007/s10653-017-9947-0. PubMed DOI
Zhang X., Zhang X., Lv S., Shi L., Wang R. Migration and transformation of cadmium in rice—Soil under different nitrogen sources in polymetallic sulfide mining areas. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-59409-1. PubMed DOI PMC
Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J., Jakoubková L. Chemically Enhanced Phytoextraction of Risk Elements from a Contaminated Agricultural Soil Using Zea Mays and Triticum aestivum: Performance and Metal Mobilization Over a Three Year Period. Int. J. Phytoremed. 2012;14:754–771. doi: 10.1080/15226514.2011.619231. PubMed DOI
Ghorbani M., Asadi H., Abrishamkesh S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019;7:258–265. doi: 10.1016/j.iswcr.2019.05.005. DOI
Cornelissen G., Nurida N.L., Hale S.E., Martinsen V., Silvani L., Mulder J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018;634:561–568. doi: 10.1016/j.scitotenv.2018.03.380. PubMed DOI
Zhu Y., Ma J., Chen F., Yu R., Hu G., Zhang S. Remediation of Soil Polluted with Cd in a Postmining Area Using Thiourea-Modified Biochar. Int. J. Environ. Res. Public Health. 2020;17:7654. doi: 10.3390/ijerph17207654. PubMed DOI PMC
Van Poucke R., Ainsworth J., Maeseele M., Ok Y.S., Meers E., Tack F.M.G. Chemical stabilization of Cd-contaminated soil using biochar. Appl. Geochem. 2018;88:122–130. doi: 10.1016/j.apgeochem.2017.09.001. DOI
Bamdad H., Papari S., MacQuarrie S., Hawboldt K. Study of surface heterogeneity and nitrogen functionalizing of biochars: Molecular modeling approach. Carbon. 2021;171:161–170. doi: 10.1016/j.carbon.2020.08.062. DOI
Ramzani P.M.A., Khan W.-U.-D., Iqbal M., Kausar S., Ali S., Rizwan M., Virk Z.A. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ. Sci. Pollut. Res. 2016;23:18585–18595. doi: 10.1007/s11356-016-7038-x. PubMed DOI
Yang X., Zhang S., Ju M., Liu L. Preparation and Modification of Biochar Materials and their Application in Soil Remediation. Appl. Sci. 2019;9:1365. doi: 10.3390/app9071365. DOI
Huff M.D., Kumar S., Lee J.W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manag. 2014;146:303–308. doi: 10.1016/j.jenvman.2014.07.016. PubMed DOI
Ali A., Guo D., Zhang Y., Sun X., Jiang S., Guo Z., Huang H., Liang W., Li R., Zhang Z. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-03045-9. PubMed DOI PMC
Alkharabsheh H.M., Seleiman M.F., Battaglia M.L., Shami A., Jalal R.S., Alhammad B.A., Almutairi K.F., Al–Saif A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy. 2021;11:993. doi: 10.3390/agronomy11050993. DOI
Pan F., Li Y., Chapman S.J., Khan S., Yao H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 2016;559:15–23. doi: 10.1016/j.scitotenv.2016.03.122. PubMed DOI
Wang L., Bolan N.S., Tsang D., Hou D. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 2020;720:137584. doi: 10.1016/j.scitotenv.2020.137584. PubMed DOI
Mehmood K., Baquy M.A.-A., Xu R.-K. Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic Ultisol. Arch. Agron. Soil Sci. 2018;64:834–849. doi: 10.1080/03650340.2017.1385062. DOI
Lucchini P., Quilliam R., DeLuca T.H., Vamerali T., Jones D. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014;184:149–157. doi: 10.1016/j.agee.2013.11.018. DOI
Purakayastha T., Das K., Gaskin J., Harris K., Smith J., Kumari S. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil Tillage Res. 2016;155:107–115. doi: 10.1016/j.still.2015.07.011. DOI
Hussain S., Sharma V., Arya V.M., Sharma K.R., Rao C.S. Total organic and inorganic carbon in soils under different land use/land cover systems in the foothill Himalayas. Catena. 2019;182:104104. doi: 10.1016/j.catena.2019.104104. DOI
Wojciechowski K.L., Barbano D.M. Modification of the Kjeldahl noncasein nitrogen method to include bovine milk concentrates and milks from other species. J. Dairy Sci. 2015;98:7510–7526. doi: 10.3168/jds.2015-9580. PubMed DOI
Tournassat C., Greneche J.-M., Tisserand D., Charlet L. The titration of clay minerals. J. Colloid Interface Sci. 2004;273:224–233. doi: 10.1016/j.jcis.2003.11.021. PubMed DOI
Carter S., Shackley S., Sohi S., Suy T.B., Haefele S. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis) Agronomy. 2013;3:404–418. doi: 10.3390/agronomy3020404. DOI
Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils. 2012;48:271–284. doi: 10.1007/s00374-011-0624-7. DOI
Munera-Echeverri J., Martinsen V., Strand L., Zivanovic V., Cornelissen G., Mulder J. Cation exchange capacity of biochar: An urgent method modification. Sci. Total Environ. 2018;642:190–197. doi: 10.1016/j.scitotenv.2018.06.017. PubMed DOI
Subedi R., Taupe N., Pelissetti S., Petruzzelli L., Bertora C., Leahy J.J., Grignani C. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. J. Environ. Manag. 2016;166:73–83. doi: 10.1016/j.jenvman.2015.10.007. PubMed DOI
Mosharrof M., Uddin K., Sulaiman M.F., Mia S., Shamsuzzaman S.M., Haque A.N.A. Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil. Agriculture. 2021;11:793. doi: 10.3390/agriculture11080793. DOI