A novel multi-scale based deep convolutional neural network for detecting COVID-19 from X-rays
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35693544
PubMed Central
PMC9167691
DOI
10.1016/j.asoc.2022.109109
PII: S1568-4946(22)00386-6
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, Chest X-ray, Deep neural network, Internet of things,
- Publikační typ
- časopisecké články MeSH
The COVID-19 pandemic has posed an unprecedented threat to the global public health system, primarily infecting the airway epithelial cells in the respiratory tract. Chest X-ray (CXR) is widely available, faster, and less expensive therefore it is preferred to monitor the lungs for COVID-19 diagnosis over other techniques such as molecular test, antigen test, antibody test, and chest computed tomography (CT). As the pandemic continues to reveal the limitations of our current ecosystems, researchers are coming together to share their knowledge and experience in order to develop new systems to tackle it. In this work, an end-to-end IoT infrastructure is designed and built to diagnose patients remotely in the case of a pandemic, limiting COVID-19 dissemination while also improving measurement science. The proposed framework comprises six steps. In the last step, a model is designed to interpret CXR images and intelligently measure the severity of COVID-19 lung infections using a novel deep neural network (DNN). The proposed DNN employs multi-scale sampling filters to extract reliable and noise-invariant features from a variety of image patches. Experiments are conducted on five publicly available databases, including COVIDx, COVID-19 Radiography, COVID-XRay-5K, COVID-19-CXR, and COVIDchestxray, with classification accuracies of 96.01%, 99.62%, 99.22%, 98.83%, and 100%, and testing times of 0.541, 0.692, 1.28, 0.461, and 0.202 s, respectively. The obtained results show that the proposed model surpasses fourteen baseline techniques. As a result, the newly developed model could be utilized to evaluate treatment efficacy, particularly in remote locations.
Department of Computer Science OsloMet Oslo Metropolitan University Oslo 460167 Norway
Department of Plastic and Reconstructive Surgery Oslo University Hospital Oslo 460167 Norway
Zobrazit více v PubMed
Xu Y.-H., Dong J.-H., An W.-M., Lv X.-Y., Yin X.-P., Zhang J.-Z., Dong L., Ma X., Zhang H.-J., Gao B.-L. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J. Infection. 2020;80(4):394–400. PubMed PMC
worldometere Y.-H. 2020. Covid-19 coronavirus pandemic. URL https://www.worldometers.info/coronavirus/?fbclid=IwAR2UgycDn8i64zB71xUGm5svanZxQEI_U6IEEzgiNRtMnVLtBQtyKqPW_e8.
Mahase E. 2020. Coronavirus: covid-19 has killed more people than SARS and mers combined, despite lower case fatality rate. PubMed
Yan L., Zhang H.-T., Xiao Y., Wang M., Guo Y., Sun C., Tang X., Jing L., Li S., Zhang M., et al. 2020. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in wuhan. medRxiv.
Singh A., Chandra S.K., Bajpai M.K. 2020. Study of non-pharmacological interventions on COVID-19 spread. medRxiv.
Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–1844. PubMed PMC
Vermeiren C., Marchand-Senécal X., Sheldrake E., Bulir D., Smieja M., Chong S., Forbes J.D., Katz K. Comparison of copan eswab and floqswab for COVID-19 PCR diagnosis: working around a supply shortage. J. Clin. Microbiol. 2020 PubMed PMC
Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian. Pac. J. Allergy Immunol. 2020;38(1):1–9. PubMed
Fang Y., Zhang H., Xie J., et al. Sensitivity of chest ct for covid-19: comparison to rt-pcr. Radiology. 2020;200432 PubMed PMC
Ye Z., Zhang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol. 2020:1–9. PubMed PMC
Wang B., Jin S., Yan Q., Xu H., Luo C., Wei L., Zhao W., Hou X., Ma W., Xu Z., et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Appl. Soft Comput. 2021;98 PubMed PMC
Wong H.Y.F., Lam H.Y.S., Fong A.H.-T., Leung S.T., Chin T.W.-Y., Lo C.S.Y., Lui M.M.-S., Lee J.C.Y., Chiu K.W.-H., Chung T.W.-H., et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296(2):E72–E78. PubMed PMC
A.K. Gupta, A. Seal, P. Khanna, A. Yazidi, O. Krejcar, Gated contextual features for salient object detection, IEEE Trans. Instrum. Measur., 1–13.
Gupta A.K., Seal A., Khanna P., Herrera-Viedma E., Krejcar O. Almnet: Adjacent layer driven multiscale features for salient object detection. IEEE Trans. Instrum. Meas. 2021;70:1–14. doi: 10.1109/TIM.2021.3108503. PubMed DOI
K. Mohan, A. Seal, O. Krejcar, A. Yazidi, FER-net: facial expression recognition using deep neural net, Neural Comput. Appl., 1–12.
Mohan K., Seal A., Krejcar O., Yazidi A. Facial expression recognition using local gravitational force descriptor-based deep convolution neural networks. IEEE Trans. Instrum. Meas. 2020;70:1–12. PubMed
Karnati M., Seal A., Yazidi A., Krejcar O. Lienet: A deep convolution neural networks framework for detecting deception. IEEE Trans. Cogn. Dev. Syst. 2021
Yaqoob I., Ahmed E., Hashem I.A.T., Ahmed A.I.A., Gani A., Imran M., Guizani M. Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 2017;24(3):10–16.
Wang L., Lin Z.Q., Wong A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 2020;10(1):1–12. PubMed PMC
Rahman T. 2020. COVID-19 radiography database. URL https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
Minaee S., Kafieh R., Sonka M., Yazdani S., Soufi G.J. Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning. Med. Image Anal. 2020;65 PubMed PMC
Khan A.I., Shah J.L., Bhat M.M. Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 2020 PubMed PMC
C. Li, M. Wang, G. Wu, K. Rana, N. Charoenkitkarn, J. Chan, COVID19 chest X-ray classification with simple convolutional neural network, in: CSBio’20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics, 2020, pp. 97–100.
Yan Q., Wang B., Gong D., Luo C., Zhao W., Shen J., Ai J., Shi Q., Zhang Y., Jin S., et al. Covid-19 chest CT image segmentation network by multi-scale fusion and enhancement operations. IEEE Trans. Big Data. 2021;7(1):13–24. PubMed PMC
Jain R., Gupta M., Taneja S., Hemanth D.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 2020:1–11. PubMed PMC
Hemdan E.E.-D., Shouman M.A., Karar M.E. 2020. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
Ohata E.F., Bezerra G.M., das Chagas J.V.S., Neto A.V.L., Albuquerque A.B., de Albuquerque V.H.C., Reboucas Filho P.P. Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA J. Autom. Sin. 2020;8(1):239–248.
Tabik S., Gómez-Ríos A., Martín-Rodríguez J.L., Sevillano-García I., Rey-Area M., Charte D., Guirado E., Suárez J.-L., Luengo J., Valero-González M., et al. Covidgr dataset and COVID-sdnet methodology for predicting COVID-19 based on chest X-ray images. IEEE J. Biomed. Health Inf. 2020;24(12):3595–3605. PubMed PMC
Arias-Londoño J.D., Gomez-Garcia J.A., Moro-Velázquez L., Godino-Llorente J.I. Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. a thoughtful evaluation approach. IEEE Access. 2020;8:226811–226827. PubMed PMC
Wang J., Bao Y., Wen Y., Lu H., Luo H., Xiang Y., Li X., Liu C., Qian D. Prior-attention residual learning for more discriminative COVID-19 screening in CT images. IEEE Trans. Med. Imaging. 2020;39(8):2572–2583. PubMed
Apostolopoulos I.D., Mpesiana T.A. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020:1. PubMed PMC
Ozturk T., Talo M., Yildirim E.A., Baloglu U.B., Yildirim O., Acharya U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020;121 PubMed PMC
Narin A., Kaya C., Pamuk Z. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 2021;24(3):1207–1220. PubMed PMC
Nguyen T.T. 2020. Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions. Preprint.
Maghdid H.S., Ghafoor K.Z., Sadiq A.S., Curran K., Rabie K. 2020. A novel ai-enabled framework to diagnose coronavirus covid 19 using smartphone embedded sensors: Design study. arXiv preprint arXiv:2003.07434.
Rao A.S.S., Vazquez J.A. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infect. Control Hosp. Epidemiol. 2020;41(7):826–830. PubMed PMC
Allam Z., Jones D.S. Healthcare. Vol. 8. Multidisciplinary Digital Publishing Institute; 2020. On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management; p. 46. PubMed PMC
Otoom M., Otoum N., Alzubaidi M.A., Etoom Y., Banihani R. An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomed. Signal Process. Control. 2020;62 PubMed PMC
Zhang M., Chu R., Dong C., Wei J., Lu W., Xiong N. Rldd: An advanced residual learning diagnosis detection system for COVID-19 in iIoT. IEEE Trans. Ind. Inf. 2021 PubMed PMC
Dourado C.M., Da Silva S.P.P., Da Nóbrega R.V.M., Rebouças Filho P.P., Muhammad K., De Albuquerque V.H.C. An open IoHT-based deep learning framework for online medical image recognition. IEEE J. Sel. Areas Commun. 2020;39(2):541–548.
Rodrigues D.D.A., Ivo R.F., Satapathy S.C., Wang S., Hemanth J., Reboucas Filho P.P. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognit. Lett. 2020;136:8–15.
Hu Q., Ohata E.F., Silva F.H., Ramalho G.L., Han T., Reboucas Filho P.P. A new online approach for classification of pumps vibration patterns based on intelligent IoT system. Measurement. 2020;151
Dourado Jr. C.M., da Silva S.P.P., da Nobrega R.V.M., Barros A.C.d.S., Reboucas Filho P.P., de Albuquerque V.H.C. Deep learning IoT system for online stroke detection in skull computed tomography images. Comput. Netw. 2019;152:25–39.
Dansana D., Kumar R., Bhattacharjee A., Hemanth D.J., Gupta D., Khanna A., Castillo O. Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm. Soft Comput. 2020:1–9. PubMed PMC