Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35726917
PubMed Central
PMC9426456
DOI
10.1128/mbio.00609-22
Knihovny.cz E-zdroje
- Klíčová slova
- Europe, enzootic, enzootic evolution, evolution, high-pathogenicity avian influenza, migratory birds, poultry,
- MeSH
- divoká zvířata MeSH
- drůbež MeSH
- fylogeneze MeSH
- ptačí chřipka u ptáků * epidemiologie MeSH
- ptáci MeSH
- virus chřipky A, podtyp H5N1 * genetika MeSH
- virus chřipky A * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe.
Animal and Plant Health Agencygrid 422685 f Weybridge New Haw Addlestone Surrey United Kingdom
Croatian Veterinary Institute Poultry Centre Zagreb Croatia
Department of Microbiology National Veterinary Institute SVA Uppsala Sweden
Department of Pathology National Veterinary Institute SVA Uppsala Sweden
Department of Poultry Diseases National Veterinary Research Institute Puławy Poland
Department of Veterinary and Animal Sciences University of Copenhagen Frederiksberg Denmark
Institute of Diagnostic Virology Friedrich Loeffler Institute Greifswald Insel Riems Germany
Service of Avian Virology and Immunology Sciensano Brussels Belgium
Zobrazit více v PubMed
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux E, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Lima E, Baldinelli F. 2021. Avian influenza overview February-May 2021. EFSA J 19:e06951. doi:10.2903/j.efsa.2021.6951. PubMed DOI PMC
Poen MJ, Verhagen JH, Manvell RJ, Brown I, Bestebroer TM, van der Vliet S, Vuong O, Scheuer RD, van der Jeugd HP, Nolet BA, Kleyheeg E, Müskens GJDM, Majoor FA, Grund C, Fouchier RAM. 2016. Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016. Euro Surveill 21:30349. doi:10.2807/1560-7917.ES.2016.21.38.30349. PubMed DOI PMC
King J, Harder T, Conraths FJ, Beer M, Pohlmann A. 2021. The genetics of highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006-2020. Transbound Emerg Dis 68:1136–1150. doi:10.1111/tbed.13843. PubMed DOI
Verhagen JH, Fouchier RAM, Lewis N. 2021. Highly pathogenic avian influenza viruses at the wild-domestic bird interface in Europe: future directions for research and surveillance. Viruses 13:212. doi:10.3390/v13020212. PubMed DOI PMC
Banyard AC, Lean FZX, Robinson C, Howie F, Tyler G, Nisbet C, Seekings J, Meyer S, Whittard E, Ashpitel HF, Bas M, Byrne AMP, Lewis T, James J, Stephan L, Lewis NS, Brown IH, Hansen RDE, Reid SM. 2022. Detection of highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b in Great Skuas: a species of conservation concern in Great Britain. Viruses 14:212. doi:10.3390/v14020212. PubMed DOI PMC
Lo FT, Zecchin B, Diallo AA, Racky O, Tassoni L, Diop A, Diouf M, Diouf M, Samb YN, Pastori A, Gobbo F, Ellero F, Diop M, Lo MM, Diouf MN, Fall M, Ndiaye AA, Gaye AM, Badiane M, Lo M, Youm BN, Ndao I, Niaga M, Terregino C, Diop B, Ndiaye Y, Angot A, Seck I, Niang M, Soumare B, Fusaro A, Monne I. 2022. Intercontinental spread of Eurasian highly pathogenic avian influenza A(H5N1) to Senegal. Emerg Infect Dis 28:234–237. doi:10.3201/eid2801.211401. PubMed DOI PMC
Caliendo V, Lewis NS, Pohlmann A, Baillie SR, Banyard AC, Beer M, Brown IH, Fouchier RAM, Hansen RDE, Lameris TK, Lang AS, Laurendeau S, Lung O, Robertson G, van der Jeugd H, Alkie TA, Thorup K, van Toor ML, Waldenström J, Yason C, Kuiken T, Berhane Y. 2022. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. bioRxiv 10.1101/2022.01.13.476155. PubMed DOI PMC
Bevins SN, Shriner SA, Cumbee JC, Jr, Dilione KE, Douglass KE, Ellis JW, Killian ML, Torchetti MK, Lenoch JB. 2022. Intercontinental movement of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4 virus to the United States, 2021. Emerg Infect Dis 28:1006–1011. doi:10.3201/eid2805.220318. PubMed DOI PMC
Venkatesh D, Poen M, Bestebroer T, Scheuer R, Vuong O, Chkhaidze M, Machablishvili A, Mamuchadze J, Ninua L, Fedorova N, Halpin R, Lin X, Ransier A, Stockwell T, Wentworth D, Kriti D, Dutta J, van Bakel H, Puranik A, Slomka M, Essen S, Brown I, Fouchier R, Lewis N. 2018. Avian influenza viruses in wild birds: virus evolution in a multihost ecosystem. J Virol 92:e00433-18. doi:10.1128/JVI.00433-18. PubMed DOI PMC
Fereidouni SR, Starick E, Beer M, Wilking H, Kalthoff D, Grund C, Häuslaigner R, Breithaupt A, Lange E, Harder TC. 2009. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS One 4:e6706. doi:10.1371/journal.pone.0006706. PubMed DOI PMC
van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. 2014. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol 83:266–275. doi:10.1111/1365-2656.12131. PubMed DOI PMC
Waldenström J, Kuiken T, Wille M. 2017. Narrative overview on wild bird migration in the context of highly pathogenic avian influenza incursion into the European Union. External scientific report. European Food Safety Authority, Parma, Italy. 10.2903/sp.efsa.2017.EN-1283. DOI
Peeters B, Reemers S, Dortmans J, de Vries E, de Jong M, van de Zande S, Rottier PJM, de Haan CAM. 2017. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: consequences for vaccine strain selection. Virology 503:83–93. doi:10.1016/j.virol.2017.01.012. PubMed DOI
Rijks JM, Hesselink H, Lollinga P, Wesselman R, Prins P, Weesendorp E, Engelsma M, Heutink R, Harders F, Kik M, Rozendaal H, van den Kerkhof H, Beerens N. 2021. Highly pathogenic avian influenza A(H5N1) virus in wild red foxes, the Netherlands, 2021. Emerg Infect Dis 27:2960–2962. doi:10.3201/eid2711.211281. PubMed DOI PMC
European Food Safety Authority Panel on Animal Health and Welfare (AHAW), More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke H-H, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. 2017. Avian influenza. EFSA J 15:e04991. doi:10.2903/j.efsa.2017.4991. PubMed DOI PMC
Bengtsson D, Avril A, Gunnarsson G, Elmberg J, Soderquist P, Norevik G, Tolf C, Safi K, Fiedler W, Wikelski M, Olsen B, Waldenström J. 2014. Movements, home-range size and habitat selection of mallards during autumn migration. PLoS One 9:e100764. doi:10.1371/journal.pone.0100764. PubMed DOI PMC
Galletti G, Santi A, Guberti V, Paternoster G, Licata E, Loli Piccolomini L, Procopio A, Tamba M. 2018. A method to identify the areas at risk for the introduction of avian influenza virus into poultry flocks through direct contact with wild ducks. Transbound Emerg Dis 65:1033–1038. doi:10.1111/tbed.12838. PubMed DOI
Velkers FC, Manders T, Vernooij J, Stahl J, Slaterus R, Stegeman JA. 2021. Association of wild bird densities around poultry farms with the risk of highly pathogenic avian influenza virus subtype H5N8 outbreaks in the Netherlands, 2016. Transbound Emerg Dis 68:76–87. doi:10.1111/tbed.13595. PubMed DOI PMC
Sims LD. 2013. Intervention strategies to reduce the risk of zoonotic infection with avian influenza viruses: scientific basis, challenges and knowledge gaps. Influenza Other Respir Viruses 7(Suppl 2):15–25. doi:10.1111/irv.12076. PubMed DOI PMC
Swayne D, Spackman E, Pantin-Jackwood M. 2014. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. Ecohealth 11:94–108. doi:10.1007/s10393-013-0861-3. PubMed DOI