Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex

. 2022 Jun 22 ; 12 (1) : 10531. [epub] 20220622

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35732784
Odkazy

PubMed 35732784
PubMed Central PMC9217945
DOI 10.1038/s41598-022-12615-5
PII: 10.1038/s41598-022-12615-5
Knihovny.cz E-zdroje

Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.

Zobrazit více v PubMed

Foote M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 1997;28:129–152. doi: 10.1146/annurev.ecolsys.28.1.129. DOI

Félix MA. Phenotypic evolution with and beyond genome evolution. Curr. Top. Dev. Biol. 2016;119:291–347. doi: 10.1016/bs.ctdb.2016.04.002. PubMed DOI

Carroll SB. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell. 2008;134:25–36. doi: 10.1016/j.cell.2008.06.030. PubMed DOI

Harvey, P. & Pagel, M. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).

Huxley JS, Teissier G. Terminology of relative growth. Nature. 1936;137:780–781. doi: 10.1038/137780b0. DOI

Klingenberg CP. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016;226:113–137. doi: 10.1007/s00427-016-0539-2. PubMed DOI PMC

Russell, E. S. Form and Function: A Contribution to the History of Animal Morphology. (John Murray, 1916).

Goswami A, Polly PD. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 2010;16:213–243. doi: 10.1017/S1089332600001881. DOI

Vidal-García M, Byrne PG, Roberts JD, Keogh JS. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 2014;27:181–192. doi: 10.1111/jeb.12292. PubMed DOI

Erwin DH. Disparity: Morphological pattern and developmental context. Palaeontology. 2007;50:57–73. doi: 10.1111/j.1475-4983.2006.00614.x. DOI

Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018;27:613–635. doi: 10.1111/mec.14486. PubMed DOI

Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Volume 8: Insectivores. vol. 8 (Lynx Edicions, 2018).

Jacquet F, et al. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): From a forest origin to broad ecological expansion across Africa. BMC Evol. Biol. 2015;15:71. doi: 10.1186/s12862-015-0344-y. PubMed DOI PMC

Ceríaco LMP, et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from PrÍncipe Island (Gulf of Guinea) Mammalia. 2015;79:325–341. doi: 10.1515/mammalia-2014-0056. DOI

Nicolas V, et al. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): Influences of the palaeoclimate on its diversification and evolution. J. Biogeogr. 2019;46:871–883. doi: 10.1111/jbi.13534. DOI

Konečný A, Hutterer R, Meheretu Y, Bryja J. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. J. Vertebr. Biol. 2020;69:20064.1. doi: 10.25225/jvb.20064. DOI

Couvreur TLP, et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 2021;96:16–51. doi: 10.1111/brv.12644. PubMed DOI PMC

Mayr E, O’Hara RJ. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution. 1986;40:55–67. doi: 10.1111/j.1558-5646.1986.tb05717.x. PubMed DOI

Wiens JJ, Graham CH. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI

Smith TB, Wayne RK, Girman DJ, Bruford MW. A role for ecotones in generating rainforest biodiversity. Science. 1997;276:1855–1857. doi: 10.1126/science.276.5320.1855. DOI

Needham AE, Hardy AC. The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc. R Soc. Lond. Ser. B Biol. Sci. 1950;137:115–136. PubMed

Hanken, J. & Hall, B. K. The Skull, Volume 3: Functional and Evolutionary Mechanisms. (University of Chicago Press, 1993).

Hautier L, Lebrun R, Cox PG. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J. Morphol. 2012;273:1319–1337. doi: 10.1002/jmor.20061. PubMed DOI

Aristide L, et al. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution. 2018;72:2697–2711. doi: 10.1111/evo.13609. PubMed DOI

Hardin G. The competitive exclusion principle. Science. 1960;131:1292–1297. doi: 10.1126/science.131.3409.1292. PubMed DOI

Denys C, et al. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. Zoosystema. 2021;43:729–757. doi: 10.5252/zoosystema2021v43a30. DOI

Estevo CA, Nagy-Reis MB, Nichols JD. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One. 2017;12:e0179489. doi: 10.1371/journal.pone.0179489. PubMed DOI PMC

Spaeth PA. Morphological convergence and coexistence in three sympatric North American species of Microtus (Rodentia: Arvicolinae) J. Biogeogr. 2009;36:350–361. doi: 10.1111/j.1365-2699.2008.02015.x. DOI

Adams DC, Berns CM, Kozak KH, Wiens JJ. Are rates of species diversification correlated with rates of morphological evolution? Proc. R. Soc. B Biol. Sci. 2009;276:2729–2738. doi: 10.1098/rspb.2009.0543. PubMed DOI PMC

Caumul R, Polly PD. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (marmota, Rodentia) Evolution. 2005;59:2460–2472. doi: 10.1111/j.0014-3820.2005.tb00955.x. PubMed DOI

Da Silva FO, et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 2018;9:376. doi: 10.1038/s41467-017-02788-3. PubMed DOI PMC

Hirano T, Kameda Y, Kimura K, Chiba S. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia. Mol. Phylogenet. Evol. 2014;70:171–181. doi: 10.1016/j.ympev.2013.09.020. PubMed DOI

Ge D, Yao L, Xia L, Zhang Z, Yang Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha) Contrib. Zool. 2015;84:267–284. doi: 10.1163/18759866-08404001. DOI

Zou Z, Zhang J. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 2016;7:12758. doi: 10.1038/ncomms12758. PubMed DOI PMC

Ananjeva NB. Current state of the problems in the phylogeny of squamate reptiles (Squamata, Reptilia) Biol. Bull. Rev. 2019;9:119–128. doi: 10.1134/S2079086419020026. DOI

Revell LJ, Harmon LJ, Collar DC. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 2008;57:591–601. doi: 10.1080/10635150802302427. PubMed DOI

Klingenberg CP, Marugán-Lobón J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 2013;62:591–610. doi: 10.1093/sysbio/syt025. PubMed DOI

Cardini A, Polly PD. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 2013;4:2458. doi: 10.1038/ncomms3458. PubMed DOI

Esquerré D, Sherratt E, Keogh JS. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution. 2017;71:2829–2844. doi: 10.1111/evo.13382. PubMed DOI

Marroig G, Cheverud JM. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution. 2005;59:1128–1142. doi: 10.1111/j.0014-3820.2005.tb01049.x. PubMed DOI

Cornette R, Tresset A, Houssin C, Pascal M, Herrel A. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew. Biol. J. Linn. Soc. 2015;114:795–807. doi: 10.1111/bij.12423. DOI

Rodgers GM, Downing B, Morrell LJ. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 2015;26:242–246. doi: 10.1093/beheco/aru185. DOI

Damuth J. Population density and body size in mammals. Nature. 1981;290:699–700. doi: 10.1038/290699a0. DOI

Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In Past Climate Variability Through Europe and Africa (eds. Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004). 10.1007/978-1-4020-2121-3_8.

Smith TB, Schneider CJ, Holder K. Refugial isolation versus ecological gradients. Genetica. 2001;112:383–398. doi: 10.1023/A:1013312510860. PubMed DOI

Brown WL, Jr, Wilson EO. Character displacement. Syst. Biol. 1956;5:49–64.

Vogel P, et al. Genetic identity of the critically endangered Wimmer’s shrew Crocidura wimmeri. Biol. J. Linn. Soc. 2014;111:224–229. doi: 10.1111/bij.12196. DOI

Esselstyn JA, et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull. Am. Mus. Nat. Hist. 2021;454:1–108. doi: 10.1206/0003-0090.454.1.1. DOI

Evin A, Bonhomme V, Claude J. Optimizing digitalization effort in morphometrics. Biol. Methods Protoc. 2020;5:bpaa023. doi: 10.1093/biomethods/bpaa023. PubMed DOI PMC

Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 2003;57:717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x. PubMed DOI

Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 2014;63:685–697. doi: 10.1093/sysbio/syu030. PubMed DOI

Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI

Revell, L. J. phytools: Phylogenetic Tools for Comparative Biology (and Other Things). (2021).

Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Pebesma E. Simple features for R: Standardized support for spatial vector data. R J. 2018;10:439. doi: 10.32614/RJ-2018-009. DOI

Oksanen, J. et al. vegan: Community Ecology Package. (2020).

Dray S, Legendre P, Peres-Neto PR. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) Ecol. Model. 2006;196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015. DOI

Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. (Springer, 2018).

Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. (2021).

Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. (2021).

Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).

Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–1055. doi: 10.2307/1940179. DOI

Rohlf FJ, Corti M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 2000;49:740–753. doi: 10.1080/106351500750049806. PubMed DOI

Schlager, S., Jefferis, G. & Ian, D. Morpho: Calculations and Visualisations Related to Geometric Morphometrics. (2020).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...