Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35732784
PubMed Central
PMC9217945
DOI
10.1038/s41598-022-12615-5
PII: 10.1038/s41598-022-12615-5
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- lebka anatomie a histologie MeSH
- lidé MeSH
- podnebí MeSH
- rejskovití * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Foote M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 1997;28:129–152. doi: 10.1146/annurev.ecolsys.28.1.129. DOI
Félix MA. Phenotypic evolution with and beyond genome evolution. Curr. Top. Dev. Biol. 2016;119:291–347. doi: 10.1016/bs.ctdb.2016.04.002. PubMed DOI
Carroll SB. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell. 2008;134:25–36. doi: 10.1016/j.cell.2008.06.030. PubMed DOI
Harvey, P. & Pagel, M. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).
Huxley JS, Teissier G. Terminology of relative growth. Nature. 1936;137:780–781. doi: 10.1038/137780b0. DOI
Klingenberg CP. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016;226:113–137. doi: 10.1007/s00427-016-0539-2. PubMed DOI PMC
Russell, E. S. Form and Function: A Contribution to the History of Animal Morphology. (John Murray, 1916).
Goswami A, Polly PD. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 2010;16:213–243. doi: 10.1017/S1089332600001881. DOI
Vidal-García M, Byrne PG, Roberts JD, Keogh JS. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 2014;27:181–192. doi: 10.1111/jeb.12292. PubMed DOI
Erwin DH. Disparity: Morphological pattern and developmental context. Palaeontology. 2007;50:57–73. doi: 10.1111/j.1475-4983.2006.00614.x. DOI
Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018;27:613–635. doi: 10.1111/mec.14486. PubMed DOI
Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Volume 8: Insectivores. vol. 8 (Lynx Edicions, 2018).
Jacquet F, et al. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): From a forest origin to broad ecological expansion across Africa. BMC Evol. Biol. 2015;15:71. doi: 10.1186/s12862-015-0344-y. PubMed DOI PMC
Ceríaco LMP, et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from PrÍncipe Island (Gulf of Guinea) Mammalia. 2015;79:325–341. doi: 10.1515/mammalia-2014-0056. DOI
Nicolas V, et al. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): Influences of the palaeoclimate on its diversification and evolution. J. Biogeogr. 2019;46:871–883. doi: 10.1111/jbi.13534. DOI
Konečný A, Hutterer R, Meheretu Y, Bryja J. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. J. Vertebr. Biol. 2020;69:20064.1. doi: 10.25225/jvb.20064. DOI
Couvreur TLP, et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 2021;96:16–51. doi: 10.1111/brv.12644. PubMed DOI PMC
Mayr E, O’Hara RJ. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution. 1986;40:55–67. doi: 10.1111/j.1558-5646.1986.tb05717.x. PubMed DOI
Wiens JJ, Graham CH. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI
Smith TB, Wayne RK, Girman DJ, Bruford MW. A role for ecotones in generating rainforest biodiversity. Science. 1997;276:1855–1857. doi: 10.1126/science.276.5320.1855. DOI
Needham AE, Hardy AC. The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc. R Soc. Lond. Ser. B Biol. Sci. 1950;137:115–136. PubMed
Hanken, J. & Hall, B. K. The Skull, Volume 3: Functional and Evolutionary Mechanisms. (University of Chicago Press, 1993).
Hautier L, Lebrun R, Cox PG. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J. Morphol. 2012;273:1319–1337. doi: 10.1002/jmor.20061. PubMed DOI
Aristide L, et al. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution. 2018;72:2697–2711. doi: 10.1111/evo.13609. PubMed DOI
Hardin G. The competitive exclusion principle. Science. 1960;131:1292–1297. doi: 10.1126/science.131.3409.1292. PubMed DOI
Denys C, et al. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. Zoosystema. 2021;43:729–757. doi: 10.5252/zoosystema2021v43a30. DOI
Estevo CA, Nagy-Reis MB, Nichols JD. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One. 2017;12:e0179489. doi: 10.1371/journal.pone.0179489. PubMed DOI PMC
Spaeth PA. Morphological convergence and coexistence in three sympatric North American species of Microtus (Rodentia: Arvicolinae) J. Biogeogr. 2009;36:350–361. doi: 10.1111/j.1365-2699.2008.02015.x. DOI
Adams DC, Berns CM, Kozak KH, Wiens JJ. Are rates of species diversification correlated with rates of morphological evolution? Proc. R. Soc. B Biol. Sci. 2009;276:2729–2738. doi: 10.1098/rspb.2009.0543. PubMed DOI PMC
Caumul R, Polly PD. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (marmota, Rodentia) Evolution. 2005;59:2460–2472. doi: 10.1111/j.0014-3820.2005.tb00955.x. PubMed DOI
Da Silva FO, et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 2018;9:376. doi: 10.1038/s41467-017-02788-3. PubMed DOI PMC
Hirano T, Kameda Y, Kimura K, Chiba S. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia. Mol. Phylogenet. Evol. 2014;70:171–181. doi: 10.1016/j.ympev.2013.09.020. PubMed DOI
Ge D, Yao L, Xia L, Zhang Z, Yang Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha) Contrib. Zool. 2015;84:267–284. doi: 10.1163/18759866-08404001. DOI
Zou Z, Zhang J. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 2016;7:12758. doi: 10.1038/ncomms12758. PubMed DOI PMC
Ananjeva NB. Current state of the problems in the phylogeny of squamate reptiles (Squamata, Reptilia) Biol. Bull. Rev. 2019;9:119–128. doi: 10.1134/S2079086419020026. DOI
Revell LJ, Harmon LJ, Collar DC. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 2008;57:591–601. doi: 10.1080/10635150802302427. PubMed DOI
Klingenberg CP, Marugán-Lobón J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 2013;62:591–610. doi: 10.1093/sysbio/syt025. PubMed DOI
Cardini A, Polly PD. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 2013;4:2458. doi: 10.1038/ncomms3458. PubMed DOI
Esquerré D, Sherratt E, Keogh JS. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution. 2017;71:2829–2844. doi: 10.1111/evo.13382. PubMed DOI
Marroig G, Cheverud JM. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution. 2005;59:1128–1142. doi: 10.1111/j.0014-3820.2005.tb01049.x. PubMed DOI
Cornette R, Tresset A, Houssin C, Pascal M, Herrel A. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew. Biol. J. Linn. Soc. 2015;114:795–807. doi: 10.1111/bij.12423. DOI
Rodgers GM, Downing B, Morrell LJ. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 2015;26:242–246. doi: 10.1093/beheco/aru185. DOI
Damuth J. Population density and body size in mammals. Nature. 1981;290:699–700. doi: 10.1038/290699a0. DOI
Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In Past Climate Variability Through Europe and Africa (eds. Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004). 10.1007/978-1-4020-2121-3_8.
Smith TB, Schneider CJ, Holder K. Refugial isolation versus ecological gradients. Genetica. 2001;112:383–398. doi: 10.1023/A:1013312510860. PubMed DOI
Brown WL, Jr, Wilson EO. Character displacement. Syst. Biol. 1956;5:49–64.
Vogel P, et al. Genetic identity of the critically endangered Wimmer’s shrew Crocidura wimmeri. Biol. J. Linn. Soc. 2014;111:224–229. doi: 10.1111/bij.12196. DOI
Esselstyn JA, et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull. Am. Mus. Nat. Hist. 2021;454:1–108. doi: 10.1206/0003-0090.454.1.1. DOI
Evin A, Bonhomme V, Claude J. Optimizing digitalization effort in morphometrics. Biol. Methods Protoc. 2020;5:bpaa023. doi: 10.1093/biomethods/bpaa023. PubMed DOI PMC
Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 2003;57:717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x. PubMed DOI
Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 2014;63:685–697. doi: 10.1093/sysbio/syu030. PubMed DOI
Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Revell, L. J. phytools: Phylogenetic Tools for Comparative Biology (and Other Things). (2021).
Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Pebesma E. Simple features for R: Standardized support for spatial vector data. R J. 2018;10:439. doi: 10.32614/RJ-2018-009. DOI
Oksanen, J. et al. vegan: Community Ecology Package. (2020).
Dray S, Legendre P, Peres-Neto PR. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) Ecol. Model. 2006;196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015. DOI
Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. (Springer, 2018).
Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. (2021).
Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. (2021).
Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).
Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–1055. doi: 10.2307/1940179. DOI
Rohlf FJ, Corti M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 2000;49:740–753. doi: 10.1080/106351500750049806. PubMed DOI
Schlager, S., Jefferis, G. & Ian, D. Morpho: Calculations and Visualisations Related to Geometric Morphometrics. (2020).