Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35733696
PubMed Central
PMC9157532
DOI
10.1039/d2ra01911f
PII: d2ra01911f
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Synthesis of casein-derived carbon nanodots (CND) using a microwave-assisted approach, giving a high product yield (25%), is reported. Casein was used as a sustainable carbon source, and polyvinylpyrrolidone was used as a stabilizer for the nanodots. The size of the prepared amorphous CND corresponds to individual casein coils, which were only partially carbonized. They were obtained due to the disintegration of casein micelles and submicelles within the microwave-assisted solvothermal process. The resulting nanodots had bright photoluminescence, and their electronic structure and optical properties were investigated. A novel competitive model of their luminescence mechanism was introduced to explain a phenomenon beyond the standard models. The synthesized carbon nanodots were used as luminescent ink for anticounterfeit applications. A polymer matrix nanocomposite was prepared by dispersing the nanodots in a flexible and robust poly(styrene-ethylene-butylene-styrene) tri-block copolymer (SEBS) using the solution cast method. For the first time, the effect of CND on the luminescence and mechanical properties of the SEBS/CND self-supporting films was studied. The film was also studied as a phosphor for light-emitting diodes, with a unique experimental setup to avoid self-absorption, which results in low efficiency and eliminates the excess UV transmitted. Because of their high luminescence, photostability, and mechanical properties, these CND could be used as luminescent labels in the packaging and optoelectronics industries.
See more in PubMed
Sciortino A. Cannizzo A. Messina F. C. 2018;4:67.
Cayuela A. Soriano M. L. Carrillo-Carrion C. Valcarcel M. Chem. Commun. 2016;52:1311–1326. PubMed
Park Y. Yoo J. Lim B. Kwon W. Rhee S. W. J. Mater. Chem. A. 2016;4:11582–11603.
Zhang J. Yu S. H. Mater. Today. 2016;19:382–393.
Lu W. Gong X. Yang Z. Zhang Y. Hu Q. Shuang S. Dong C. Choi M. M. F. RSC Adv. 2015;5:16972–16979.
Longo A. V. Sciortino A. Cannas M. Messina F. Phys. Chem. Chem. Phys. 2020;22:13398–13407. PubMed
Sharma A. Das J. J. Nanobiotechnol. 2019;17:92. PubMed
Sai L. Chen J. Chang Q. Shi W. Chen Q. Huang L. RSC Adv. 2017;7:16608–16615.
Wang W. Damm C. Walter J. Nacken T. J. Peukert W. Phys. Chem. Chem. Phys. 2016;18:466–475. PubMed
Ren Q. Ga L. Ai J. ACS Omega. 2019;4:15842–15848. PubMed PMC
Varisco M. Zufferey D. Ruggi A. Zhang Y. Erni R. Mamula O. R. Soc. Open Sci. 2017;4:170900. PubMed PMC
Omer K. M. Idrees S. A. Hassan A. Q. Jamil L. A. New J. Chem. 2020;44:5120–5126.
Li M. Feng Y. Tian Q. Yao W. Liu L. Li X. Wang H. Wu W. Dalton Trans. 2018;47:11264–11271. PubMed
Wang Z. J. Zhao X. J. Guo Z. Z. Miao P. Gong X. Org. Electron. 2018;62:284–289.
El-Shamy A. G. Zayied H. S. S. Synth. Met. 2020;259:116218.
Issa M. A. Abidin Z. Z. Molecules. 2020;25:3541.
Lu S. Sui L. Liu J. Zhu S. Chen A. Jin M. Yang B. Adv. Mater. 2017;29:1603443. PubMed
Gupta P. Bera M. Maji P. K. Polym. Adv. Technol. 2017;28:1428–1437.
Andres J. Hersch R. D. Moser J.-E. Chauvin A. S. Adv. Funct. Mater. 2014;24:5029–5036.
Lim K. T. P. Liu H. Liu Y. Yang J. K. W. Nat. Commun. 2019;10:25. PubMed PMC
Park J. Y. Chung J. W. Yang H. K. Ceram. Int. 2019;45:11591–11599.
Liu F. Li Z. Li Y. Feng Y. Feng W. Carbon. 2021;181:9–15.
Kumar P. Singh S. Gupta B. K. Nanoscale. 2016;8:14297–14340. PubMed
Zhang Z. Sun W. Wu P. ACS Sustainable Chem. Eng. 2015;3:1412–1418.
Guo J. Li H. Ling L. Li G. Cheng R. Lu X. Xie A.-Q. Li Q. Wang C.-F. Chen S. ACS Sustainable Chem. Eng. 2020;8:1566–1572.
Zheng J.-x. Liu X.-h. Yang Y.-z. Liu X.-g. Xu B.-s. New Carbon Mater. 2018;33:276–288.
Ma Y. Zhang X. Bai J. Huang K. Ren L. Chem. Eng. J. 2019;374:787–792.
Jones S. S. Sahatiya P. Badhulika S. New J. Chem. 2017;41:13130–13139.
Hong W. T. Yang H. K. Optik. 2021;241:166449.
He M. Zhang J. Wang H. Kong Y. Xiao Y. Xu W. Nanoscale Res. Lett. 2018;13:175. PubMed PMC
Li H. Xu Y. Zhao L. Ding J. Chen M. Chen G. Li Y. Dang L. Carbon. 2019;143:391–401.
Sahoo N. K. Jana G. C. Aktara M. N. Das S. Nayim S. Patra A. Bhatttacharjee P. Bhadra K. Hossain M. Mater. Sci. Eng., C. 2020;108:110429. PubMed
Cadesky L. Ribeiro M. W. Kriner K. T. Karwe M. V. Moraru C. I. J. Dairy Sci. 2017;100:7055–7070. PubMed
Warncke M. Kulozik U. Foods. 2021;10:1361. PubMed PMC
Xie Y. T. Zheng J. X. Wang Y. L. Wan J. L. Yang Y. Z. Liu X. G. Chen Y. K. Nanotechnology. 2019;30:085406. PubMed
Pal A. Sk M. P. Chattopadhyay A. Mater. Adv. 2020;1:525–553.
Zhang B. Liu Y. Ren M. Li W. Zhang X. Vajtai R. Ajayan P. M. Tour J. M. Wang L. ChemSusChem. 2019;12:4202–4210. PubMed
Mintz K. J. Bartoli M. Rovere M. Zhou Y. Hettiarachchi S. D. Paudyal S. Chen J. Domena J. B. Liyanage P. Y. Sampson R. Khadka D. Pandey R. R. Huang S. Chusuei C. C. Tagliaferro A. Leblanc R. M. Carbon. 2021;173:433–447.
Bandi R. Gangapuram B. R. Dadigala R. Eslavath R. Singh S. S. Guttena V. RSC Adv. 2016;6:28633–28639.
Victoria F. Manioudakis J. Zaroubi L. Findlay B. Naccache R. RSC Adv. 2020;10:32202–32210. PubMed PMC
Ederer J. Janoš P. Ecorchard P. Tolasz J. Štengl V. Beneš H. Perchacz M. Pop-Georgievski O. RSC Adv. 2017;7:12464–12473.
Eby D. M. Artyushkova K. Paravastu A. K. Johnson G. R. J. Mater. Chem. 2012;22:9875–9883.
Wang C. Wang C. Xu P. Li A. Chen Y. Zhuo K. J. Mater. Sci. 2016;51:861–867.
Xu D. Lei F. Chen H. Yin L. Shi Y. Xie J. RSC Adv. 2019;9:8290–8299. PubMed PMC
Sirocic A. P. Krehula L. K. Katancic Z. Murgj Z. H. Chem. Biochem. Eng. Q. 2017;30:501–509.
Sarswat P. K. Free M. L. Phys. Chem. Chem. Phys. 2015;17:27642–27652. PubMed
Vien D. L., Colthup N., Fateley W. and Grasselli J., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991
Zhu C. Zhai J. Dong S. Chem. Commun. 2012;48:9367–9369. PubMed
Manoj B. Raj A. M. Chirayil G. T. Sci. Rep. 2017;7:18012. PubMed PMC
Gomez I. J. Sullerio M. V. Doleckova A. Pizurova N. Medalova J. Roy R. Necas D. Zajickova L. J. Phys. Chem. C. 2021;125:21044–21054.
Carbonaro C. M. Corpino R. Salis M. Mocci F. Thakkar S. V. Olla C. Ricci P. C. C. 2019;5:60.
Margraf J. T. Strauss V. Guldi D. M. Clark T. J. Phys. Chem. B. 2015;119:7258–7265. PubMed
Gesesse G. D. Berenguer A. G. Barthe M.-F. Ania C. O. J. Photochem. Photobiol., A. 2020;398:112622.
Mintz K. J. Zhou Y. Leblanc R. M. Nanoscale. 2019;11:4634–4652. PubMed PMC
Tauc J. Grigorovici R. Vancu A. Phys. Status Solidi. 1966;15:627–637.
Murru C. Badia-Laino R. Garcia M. E. D. Antioxidants. 2020;9:1147. PubMed PMC
Ferreyra D. D. Sartori D. R. Riega S. D. E. Rodriguez H. B. Gonzalez M. C. Carbon. 2020;167:230–243.
Wood D. L. Tauc J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B: Solid State. 1972;5:3144–3151.
Studenyak I. Kranjec M. Kurik M. Int. J. Opt. Appl. 2014;4:76–83.
Neha Sharma K. P. Ilango S. Dash S. Tyagi A. K. Advanced Materials Proceedings. 2017;2:342–346.
Sun Y. P. Zhou B. Lin Y. Wang W. Fernando K. A. S. Pathak P. Meziani M. J. Harruff B. A. Wang X. Wang H. F. Luo P. J. G. Yang H. Kose M. E. Chen B. L. Veca L. M. Xie S. Y. J. Am. Chem. Soc. 2006;128:7756–7757. PubMed
Manoj B. Raj A. M. Thomas G. C. Sci. Rep. 2018;8:13891. PubMed PMC
Zhu S. Song Y. Zhao X. Shao J. Zhang J. Yang B. Nano Res. 2015;8:355–381.
Zhi B. Yao X. X. Cui Y. Orr G. Haynes C. L. Nanoscale. 2019;11:20411–20428. PubMed
Liu Y. H. Huang H. Cao W. J. Mao B. D. Liu Y. Kang Z. H. Mater. Chem. Front. 2020;4:1586–1613.
Lakowicz J. R., Principles of fluorescence spectroscopy, Springer, USA, 2006
Alcala J. R. Gratton E. Prendergast F. G. Biophys. J. 1987;51:597–604. PubMed PMC
Kalytchuk S. Wang Y. Polakova K. Zboril R. ACS Appl. Mater. Interfaces. 2018;10:29902–29908. PubMed
Yu T. Wang H. Guo C. Zhai Y. Yang J. Yuan J. R. Soc. Open Sci. 2018;5:180245. PubMed PMC
Liu X. Li T. Z. Hou Y. Wu Q. H. Yi J. Zhang G. L. RSC Adv. 2016;6:11711–11718.
Fox P. F. Brodkorb A. Int. Dairy J. 2008;18:677–684.
Phadungath C. Songklanakarin J. Sci. Technol. 2004;27:201–212.
Dios J. R. Astrain C. G. Costa P. Viana J. C. Mendez S. L. Materials. 2019;12:1405. PubMed
Jun L., Qiaochu L., Rongrong Q. and Yanhan S., China Pat., CN100564416C, 2009