• This record comes from PubMed

Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications

. 2022 May 23 ; 12 (25) : 16277-16290. [epub] 20220601

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Synthesis of casein-derived carbon nanodots (CND) using a microwave-assisted approach, giving a high product yield (25%), is reported. Casein was used as a sustainable carbon source, and polyvinylpyrrolidone was used as a stabilizer for the nanodots. The size of the prepared amorphous CND corresponds to individual casein coils, which were only partially carbonized. They were obtained due to the disintegration of casein micelles and submicelles within the microwave-assisted solvothermal process. The resulting nanodots had bright photoluminescence, and their electronic structure and optical properties were investigated. A novel competitive model of their luminescence mechanism was introduced to explain a phenomenon beyond the standard models. The synthesized carbon nanodots were used as luminescent ink for anticounterfeit applications. A polymer matrix nanocomposite was prepared by dispersing the nanodots in a flexible and robust poly(styrene-ethylene-butylene-styrene) tri-block copolymer (SEBS) using the solution cast method. For the first time, the effect of CND on the luminescence and mechanical properties of the SEBS/CND self-supporting films was studied. The film was also studied as a phosphor for light-emitting diodes, with a unique experimental setup to avoid self-absorption, which results in low efficiency and eliminates the excess UV transmitted. Because of their high luminescence, photostability, and mechanical properties, these CND could be used as luminescent labels in the packaging and optoelectronics industries.

See more in PubMed

Sciortino A. Cannizzo A. Messina F. C. 2018;4:67.

Cayuela A. Soriano M. L. Carrillo-Carrion C. Valcarcel M. Chem. Commun. 2016;52:1311–1326. PubMed

Park Y. Yoo J. Lim B. Kwon W. Rhee S. W. J. Mater. Chem. A. 2016;4:11582–11603.

Zhang J. Yu S. H. Mater. Today. 2016;19:382–393.

Lu W. Gong X. Yang Z. Zhang Y. Hu Q. Shuang S. Dong C. Choi M. M. F. RSC Adv. 2015;5:16972–16979.

Longo A. V. Sciortino A. Cannas M. Messina F. Phys. Chem. Chem. Phys. 2020;22:13398–13407. PubMed

Sharma A. Das J. J. Nanobiotechnol. 2019;17:92. PubMed

Sai L. Chen J. Chang Q. Shi W. Chen Q. Huang L. RSC Adv. 2017;7:16608–16615.

Wang W. Damm C. Walter J. Nacken T. J. Peukert W. Phys. Chem. Chem. Phys. 2016;18:466–475. PubMed

Ren Q. Ga L. Ai J. ACS Omega. 2019;4:15842–15848. PubMed PMC

Varisco M. Zufferey D. Ruggi A. Zhang Y. Erni R. Mamula O. R. Soc. Open Sci. 2017;4:170900. PubMed PMC

Omer K. M. Idrees S. A. Hassan A. Q. Jamil L. A. New J. Chem. 2020;44:5120–5126.

Li M. Feng Y. Tian Q. Yao W. Liu L. Li X. Wang H. Wu W. Dalton Trans. 2018;47:11264–11271. PubMed

Wang Z. J. Zhao X. J. Guo Z. Z. Miao P. Gong X. Org. Electron. 2018;62:284–289.

El-Shamy A. G. Zayied H. S. S. Synth. Met. 2020;259:116218.

Issa M. A. Abidin Z. Z. Molecules. 2020;25:3541.

Lu S. Sui L. Liu J. Zhu S. Chen A. Jin M. Yang B. Adv. Mater. 2017;29:1603443. PubMed

Gupta P. Bera M. Maji P. K. Polym. Adv. Technol. 2017;28:1428–1437.

Andres J. Hersch R. D. Moser J.-E. Chauvin A. S. Adv. Funct. Mater. 2014;24:5029–5036.

Lim K. T. P. Liu H. Liu Y. Yang J. K. W. Nat. Commun. 2019;10:25. PubMed PMC

Park J. Y. Chung J. W. Yang H. K. Ceram. Int. 2019;45:11591–11599.

Liu F. Li Z. Li Y. Feng Y. Feng W. Carbon. 2021;181:9–15.

Kumar P. Singh S. Gupta B. K. Nanoscale. 2016;8:14297–14340. PubMed

Zhang Z. Sun W. Wu P. ACS Sustainable Chem. Eng. 2015;3:1412–1418.

Guo J. Li H. Ling L. Li G. Cheng R. Lu X. Xie A.-Q. Li Q. Wang C.-F. Chen S. ACS Sustainable Chem. Eng. 2020;8:1566–1572.

Zheng J.-x. Liu X.-h. Yang Y.-z. Liu X.-g. Xu B.-s. New Carbon Mater. 2018;33:276–288.

Ma Y. Zhang X. Bai J. Huang K. Ren L. Chem. Eng. J. 2019;374:787–792.

Jones S. S. Sahatiya P. Badhulika S. New J. Chem. 2017;41:13130–13139.

Hong W. T. Yang H. K. Optik. 2021;241:166449.

He M. Zhang J. Wang H. Kong Y. Xiao Y. Xu W. Nanoscale Res. Lett. 2018;13:175. PubMed PMC

Li H. Xu Y. Zhao L. Ding J. Chen M. Chen G. Li Y. Dang L. Carbon. 2019;143:391–401.

Sahoo N. K. Jana G. C. Aktara M. N. Das S. Nayim S. Patra A. Bhatttacharjee P. Bhadra K. Hossain M. Mater. Sci. Eng., C. 2020;108:110429. PubMed

Cadesky L. Ribeiro M. W. Kriner K. T. Karwe M. V. Moraru C. I. J. Dairy Sci. 2017;100:7055–7070. PubMed

Warncke M. Kulozik U. Foods. 2021;10:1361. PubMed PMC

Xie Y. T. Zheng J. X. Wang Y. L. Wan J. L. Yang Y. Z. Liu X. G. Chen Y. K. Nanotechnology. 2019;30:085406. PubMed

Pal A. Sk M. P. Chattopadhyay A. Mater. Adv. 2020;1:525–553.

Zhang B. Liu Y. Ren M. Li W. Zhang X. Vajtai R. Ajayan P. M. Tour J. M. Wang L. ChemSusChem. 2019;12:4202–4210. PubMed

Mintz K. J. Bartoli M. Rovere M. Zhou Y. Hettiarachchi S. D. Paudyal S. Chen J. Domena J. B. Liyanage P. Y. Sampson R. Khadka D. Pandey R. R. Huang S. Chusuei C. C. Tagliaferro A. Leblanc R. M. Carbon. 2021;173:433–447.

Bandi R. Gangapuram B. R. Dadigala R. Eslavath R. Singh S. S. Guttena V. RSC Adv. 2016;6:28633–28639.

Victoria F. Manioudakis J. Zaroubi L. Findlay B. Naccache R. RSC Adv. 2020;10:32202–32210. PubMed PMC

Ederer J. Janoš P. Ecorchard P. Tolasz J. Štengl V. Beneš H. Perchacz M. Pop-Georgievski O. RSC Adv. 2017;7:12464–12473.

Eby D. M. Artyushkova K. Paravastu A. K. Johnson G. R. J. Mater. Chem. 2012;22:9875–9883.

Wang C. Wang C. Xu P. Li A. Chen Y. Zhuo K. J. Mater. Sci. 2016;51:861–867.

Xu D. Lei F. Chen H. Yin L. Shi Y. Xie J. RSC Adv. 2019;9:8290–8299. PubMed PMC

Sirocic A. P. Krehula L. K. Katancic Z. Murgj Z. H. Chem. Biochem. Eng. Q. 2017;30:501–509.

Sarswat P. K. Free M. L. Phys. Chem. Chem. Phys. 2015;17:27642–27652. PubMed

Vien D. L., Colthup N., Fateley W. and Grasselli J., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991

Zhu C. Zhai J. Dong S. Chem. Commun. 2012;48:9367–9369. PubMed

Manoj B. Raj A. M. Chirayil G. T. Sci. Rep. 2017;7:18012. PubMed PMC

Gomez I. J. Sullerio M. V. Doleckova A. Pizurova N. Medalova J. Roy R. Necas D. Zajickova L. J. Phys. Chem. C. 2021;125:21044–21054.

Carbonaro C. M. Corpino R. Salis M. Mocci F. Thakkar S. V. Olla C. Ricci P. C. C. 2019;5:60.

Margraf J. T. Strauss V. Guldi D. M. Clark T. J. Phys. Chem. B. 2015;119:7258–7265. PubMed

Gesesse G. D. Berenguer A. G. Barthe M.-F. Ania C. O. J. Photochem. Photobiol., A. 2020;398:112622.

Mintz K. J. Zhou Y. Leblanc R. M. Nanoscale. 2019;11:4634–4652. PubMed PMC

Tauc J. Grigorovici R. Vancu A. Phys. Status Solidi. 1966;15:627–637.

Murru C. Badia-Laino R. Garcia M. E. D. Antioxidants. 2020;9:1147. PubMed PMC

Ferreyra D. D. Sartori D. R. Riega S. D. E. Rodriguez H. B. Gonzalez M. C. Carbon. 2020;167:230–243.

Wood D. L. Tauc J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B: Solid State. 1972;5:3144–3151.

Studenyak I. Kranjec M. Kurik M. Int. J. Opt. Appl. 2014;4:76–83.

Neha Sharma K. P. Ilango S. Dash S. Tyagi A. K. Advanced Materials Proceedings. 2017;2:342–346.

Sun Y. P. Zhou B. Lin Y. Wang W. Fernando K. A. S. Pathak P. Meziani M. J. Harruff B. A. Wang X. Wang H. F. Luo P. J. G. Yang H. Kose M. E. Chen B. L. Veca L. M. Xie S. Y. J. Am. Chem. Soc. 2006;128:7756–7757. PubMed

Manoj B. Raj A. M. Thomas G. C. Sci. Rep. 2018;8:13891. PubMed PMC

Zhu S. Song Y. Zhao X. Shao J. Zhang J. Yang B. Nano Res. 2015;8:355–381.

Zhi B. Yao X. X. Cui Y. Orr G. Haynes C. L. Nanoscale. 2019;11:20411–20428. PubMed

Liu Y. H. Huang H. Cao W. J. Mao B. D. Liu Y. Kang Z. H. Mater. Chem. Front. 2020;4:1586–1613.

Lakowicz J. R., Principles of fluorescence spectroscopy, Springer, USA, 2006

Alcala J. R. Gratton E. Prendergast F. G. Biophys. J. 1987;51:597–604. PubMed PMC

Kalytchuk S. Wang Y. Polakova K. Zboril R. ACS Appl. Mater. Interfaces. 2018;10:29902–29908. PubMed

Yu T. Wang H. Guo C. Zhai Y. Yang J. Yuan J. R. Soc. Open Sci. 2018;5:180245. PubMed PMC

Liu X. Li T. Z. Hou Y. Wu Q. H. Yi J. Zhang G. L. RSC Adv. 2016;6:11711–11718.

Fox P. F. Brodkorb A. Int. Dairy J. 2008;18:677–684.

Phadungath C. Songklanakarin J. Sci. Technol. 2004;27:201–212.

Dios J. R. Astrain C. G. Costa P. Viana J. C. Mendez S. L. Materials. 2019;12:1405. PubMed

Jun L., Qiaochu L., Rongrong Q. and Yanhan S., China Pat., CN100564416C, 2009

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...