Alterations in Blood Plasma Metabolome of Patients with Lesniowski-Crohn's Disease Shortly after Surgical Treatment-Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35736464
PubMed Central
PMC9228040
DOI
10.3390/metabo12060529
PII: metabo12060529
Knihovny.cz E-zdroje
- Klíčová slova
- Gas Chromatography-Mass Spectrometry (GC-MS), Lesniowski-Crohn’s disease, blood plasma metabolome, metabolomics,
- Publikační typ
- časopisecké články MeSH
Lesniowski-Crohn's disease (CD) is a type of chronic inflammatory bowel disease (IBD) of uncertain etiology. Initially, pharmacological management is undertaken; however, surgical intervention is necessary to improve life quality and relieve symptoms in most cases. Here changes are reported in blood metabolome that occurred three days after the ileo-colic region resection in the case of seven patients. Alterations are observed in levels of metabolites associated with multiple mitochondrial pathways, based on the Metabolite Set Enrichment Analysis, reflecting a high energy demand in the post-operative period. As most of these metabolites are also essential nutrients supplied from foods, we believe that our results might contribute to the discussion on perioperative nutrition's role in enhanced recovery.
Zobrazit více v PubMed
Gajendran M., Loganathan P., Catinella A.P., Hashash J.G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018;64:20–57. doi: 10.1016/j.disamonth.2017.07.001. PubMed DOI
Ha F., Khalil H. Crohn’s disease: A clinical update. Ther. Adv. Gastroenterol. 2015;8:352–359. doi: 10.1177/1756283X15592585. PubMed DOI PMC
Higgins P.D.R., Harding G., Leidy N.K., DeBusk K., Patrick D.L., Viswanathan H.N., Fitzgerald K., Donelson S.M., Cyrille M., Ortmeier B.G., et al. Development and validation of the Crohn’s disease patient-reported outcomes signs and symptoms (CD-PRO/SS) diary. J. Patient-Rep. Outcomes. 2018;2:24. doi: 10.1186/s41687-018-0044-7. PubMed DOI PMC
Shah S.B., Hanauer S.B. Treatment of diarrhea in patients with inflammatory bowel disease: Concepts and cautions. Rev. Gastroenterol. Disord. 2007;7:3–10. PubMed
Tigas S., Tsatsoulis A. Endocrine and metabolic manifestations in inflammatory bowel disease. Ann. Gastroenterol. 2012;25:37–44. PubMed PMC
Sugihara K., Morhardt T.L., Kamada N. The Role of Dietary Nutrients in Inflammatory Bowel Disease. Front. Immunol. 2019;9:3183. doi: 10.3389/fimmu.2018.03183. PubMed DOI PMC
Daniluk U., Daniluk J., Kucharski R., Kowalczyk T., Pietrowska K., Samczuk P., Filimoniuk A., Kretowski A., Lebensztejn D., Ciborowski M. Untargeted Metabolomics and Inflammatory Markers Profiling in Children With Crohn’s Disease and Ulcerative Colitis—A Preliminary Study. Inflamm. Bowel. Dis. 2019;25:1120–1128. doi: 10.1093/ibd/izy402. PubMed DOI
Bemelman W.A., Warusavitarne J., Sampietro G.M., Serclova Z., Zmora O., Luglio G., de Buck van Overstraeten A., Burke J.P., Buskens C.J., Colombo F., et al. ECCO-ESCP Consensus on Surgery for Crohn’s Disease. J. Crohns Colitis. 2018;12:1–16. doi: 10.1093/ecco-jcc/jjx061. PubMed DOI
Vermeire S., Van Assche G., Rutgeerts P. Laboratory markers in IBD: Useful, magic, or unnecessary toys? Gut. 2006;55:426–431. doi: 10.1136/gut.2005.069476. PubMed DOI PMC
Sobotka L., Soeters P.B. Basics in clinical nutrition: Metabolic response to injury and sepsis. Eur. J. Clin. Nutr. 2009;4:e1–e3. doi: 10.1016/j.eclnm.2008.07.005. DOI
Şimşek T., Şimşek H.U., Cantürk N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Ulus. Cerrahi. Derg. 2014;30:153–159. doi: 10.5152/UCD.2014.2653. PubMed DOI PMC
Aon M.A., Bhatt N., Cortassa S.C. Mitochondrial and cellular mechanisms for managing lipid excess. Front. Physiol. 2014;5:282. doi: 10.3389/fphys.2014.00282. PubMed DOI PMC
Gurr M.I., Harwood J.L., Frayn K.N., Murphy D.J., Michell R.H. Lipids: Biochemistry, Biotechnology and Health. 6th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2016.
Coelho A.I., Berry G.T., Rubio-Gozalbo M.E. Galactose metabolism and health. Curr. Op. Clin. Nut. Metab. Care. 2015;18:422–427. doi: 10.1097/MCO.0000000000000189. PubMed DOI
Mráček T., Drahota Z., Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta. 2013;1827:401–410. doi: 10.1016/j.bbabio.2012.11.014. PubMed DOI
Mosharov E., Crawford M.R., Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transulfuration pathway and its regulation by redox changes. Biochemistry. 2000;39:13005–13011. doi: 10.1021/bi001088w. PubMed DOI
Brosnan J.T., Brosnan M.E. The Sulfur-Containing Amino Acids: An Overview. J. Nutr. 2006;136:1636S–1640S. doi: 10.1093/jn/136.6.1636S. PubMed DOI
Lauridsen C., Jensen S.K. α-Tocopherol incorporation in mitochondria and microsomes upon supranutritional vitamin E supplementation. Genes Nutr. 2012;7:475–482. doi: 10.1007/s12263-012-0286-6. PubMed DOI PMC
Stephens N.S., Siffledeen J., Su X., Murdoch T.B., Fedorak R.N., Slupsky C.M. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J. Crohns Colitis. 2013;7:E42–E48. doi: 10.1016/j.crohns.2012.04.019. PubMed DOI
Williams H.R., Cox I.J., Walker D.G., North B.V., Patel V.M., Marshall S.E., Jewell D.P., Ghosh S., Thomas H.J., Teare J.P., et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am. J. Gastroenterol. 2009;104:1435–1444. doi: 10.1038/ajg.2009.175. PubMed DOI
Martin F.-P., Ezri J., Cominetti O., Da Silva L., Kussmann M., Godin J.-P., Nydegger A. Urinary metabolic phenotyping reveals differences in the metabolic status of healthy and inflammatory bowel disease (IBD) children in relation to growth and disease activity. Int. J. Mol. Sci. 2016;17:1310. doi: 10.3390/ijms17081310. PubMed DOI PMC
Dawiskiba T. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J. Gastroenterol. 2014;20:163. doi: 10.3748/wjg.v20.i1.163. PubMed DOI PMC
Ooi M., Nishiumi S., Yoshie T., Shiomi Y., Kohashi M., Fukunaga K., Nakamura S., Matsumoto T., Hatano N., Shinohara M., et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflamm. Res. 2011;60:831–840. doi: 10.1007/s00011-011-0340-7. PubMed DOI
Chen R., Zheng J., Li L., Li C., Chao K., Zeng Z., Chen M., Zhang S. Metabolomics facilitate the personalized management in inflammatory bowel disease. Ther. Adv. Gastroenterol. 2021;14:175628482110644. doi: 10.1177/17562848211064489. PubMed DOI PMC
Bischoff S.C., Escher J., Hébuterne X., Kłęk S., Krznaric Z., Schneider S., Shamir R., Stardelova K., Wierdsma N., Wiskin A.E., et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020;39:632–653. doi: 10.1016/j.clnu.2019.11.002. PubMed DOI
Harvey R.F., Bradshaw J.M. A simple index of Crohn’s-disease activity. Lancet. 1980;315:514. doi: 10.1016/S0140-6736(80)92767-1. PubMed DOI
Fiehn O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016;114:30.4.1–30.4.32. doi: 10.1002/0471142727.mb3004s114. PubMed DOI PMC
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-Dial: Data-independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC
Xia J., Wishart D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38:71–77. doi: 10.1093/nar/gkq329. PubMed DOI PMC