Unveiling the Native Morphology of Extracellular Vesicles from Human Cerebrospinal Fluid by Atomic Force and Cryogenic Electron Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IP-2019-04-1511 (grant to K.G.)
Croatian Science Foundation
uniri-biomed-18-279 (grant to M.M.), uniri-biomed-18-5 (grant to K.G.), uniri-prirod-18-299 (grant to D.K.), uniri-biomed-18-30 (grant to R.D.)
University of Rijeka
P1-170 (grant to M.L.) and P3-054 (grant to N.K.)
Slovenian Research Agency
Research Infrastructure for Campus-based Laboratories at the University of Rijeka project, (RC.2.2.06-0001) co-funded by the European Fund for Regional Development (ERDF) and Ministry of Science, Education and Sports of the Republic of Croatia
University of Rijeka
PubMed
35740275
PubMed Central
PMC9220600
DOI
10.3390/biomedicines10061251
PII: biomedicines10061251
Knihovny.cz E-zdroje
- Klíčová slova
- atomic force microscopy, cerebrospinal fluid, cryogenic transmission electron microscopy, extracellular vesicles, morphology, size-exclusion chromatography,
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) are membranous structures in biofluids with enormous diagnostic/prognostic potential for application in liquid biopsies. Any such downstream application requires a detailed characterization of EV concentration, size and morphology. This study aimed to observe the native morphology of EVs in human cerebrospinal fluid after traumatic brain injury. Therefore, they were separated by gravity-driven size-exclusion chromatography (SEC) and investigated by atomic force microscopy (AFM) in liquid and cryogenic transmission electron microscopy (cryo-TEM). The enrichment of EVs in early SEC fractions was confirmed by immunoblot for transmembrane proteins CD9 and CD81. These fractions were then pooled, and the concentration and particle size distribution were determined by Tunable Resistive Pulse Sensing (around 1010 particles/mL, mode 100 nm) and Nanoparticle Tracking Analysis (around 109 particles/mL, mode 150 nm). Liquid AFM and cryo-TEM investigations showed mode sizes of about 60 and 90 nm, respectively, and various morphology features. AFM revealed round, concave, multilobed EV structures; and cryo-TEM identified single, double and multi-membrane EVs. By combining AFM for the surface morphology investigation and cryo-TEM for internal structure differentiation, EV morphological subpopulations in cerebrospinal fluid could be identified. These subpopulations should be further investigated because they could have different biological functions.
Advanced Materials Department Jožef Stefan Institute SI 1000 Ljubljana Slovenia
Centre for Micro and Nanosciences and Technologies University of Rijeka HR 51000 Rijeka Croatia
Faculty of Engineering University of Rijeka HR 51000 Rijeka Croatia
Institute of Pathology Faculty of Medicine University of Ljubljana SI 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Gandham S., Su X., Wood J., Nocera A.L., Alli S.C., Milane L., Zimmerman A., Amiji M., Ivanov A.R. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol. 2020;38:1066–1098. doi: 10.1016/j.tibtech.2020.05.012. PubMed DOI PMC
Holm M.M., Kaiser J., Schwab M.E. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci. 2018;41:360–372. doi: 10.1016/j.tins.2018.03.006. PubMed DOI
Rastogi S., Sharma V., Bharti P.S., Rani K., Modi G.P., Nikolajeff F., Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int. J. Mol. Sci. 2021;22:440. doi: 10.3390/ijms22010440. PubMed DOI PMC
Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Théry C. Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracellular Vesicle Subtypes. Proc. Natl. Acad. Sci. USA. 2016;113:E968–E977. doi: 10.1073/pnas.1521230113. PubMed DOI PMC
Li M., Huang L., Chen J., Ni F., Zhang Y., Liu F. Isolation of Exosome Nanoparticles from Human Cerebrospinal Fluid for Proteomic Analysis. ACS Appl. Nano Mater. 2021;4:3351–3359. doi: 10.1021/acsanm.0c02622. DOI
Ter-Ovanesyan D., Norman M., Lazarovits R., Trieu W., Lee J.-H., Church G.M., Walt D.R. Framework for Rapid Comparison of Extracellular Vesicle Isolation Methods. eLife. 2021;10:e70725. doi: 10.7554/eLife.70725. PubMed DOI PMC
Beekman P., Enciso-Martinez A., Rho H.S., Pujari S.P., Lenferink A., Zuilhof H., Terstappen L.W.M.M., Otto C., Le Gac S. Immuno-Capture of Extracellular Vesicles for Individual Multi-Modal Characterization Using AFM, SEM and Raman Spectroscopy. Lab Chip. 2019;19:2526–2536. doi: 10.1039/C9LC00081J. PubMed DOI
Singh P.K., Patel A., Kaffenes A., Hord C., Kesterson D., Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. Micromachines. 2022;13:139. doi: 10.3390/mi13010139. PubMed DOI PMC
Chen Y., Zhu Q., Cheng L., Wang Y., Li M., Yang Q., Hu L., Lou D., Li J., Dong X., et al. Exosome Detection via the Ultrafast-Isolation System: EXODUS. Nat. Methods. 2021;18:212–218. doi: 10.1038/s41592-020-01034-x. PubMed DOI
Zhang H., Zhang Q., Deng Y., Chen M., Yang C. Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. Membranes. 2022;12:55. doi: 10.3390/membranes12010055. PubMed DOI PMC
Karimi N., Cvjetkovic A., Jang S.C., Crescitelli R., Hosseinpour Feizi M.A., Nieuwland R., Lötvall J., Lässer C. Detailed Analysis of the Plasma Extracellular Vesicle Proteome after Separation from Lipoproteins. Cell. Mol. Life Sci. 2018;75:2873–2886. doi: 10.1007/s00018-018-2773-4. PubMed DOI PMC
Chen W.W., Balaj L., Liau L.M., Samuels M.L., Kotsopoulos S.K., Maguire C.A., Loguidice L., Soto H., Garrett M., Zhu L.D., et al. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 MRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles. Mol. Ther. Nucleic Acids. 2013;2:e109. doi: 10.1038/mtna.2013.28. PubMed DOI PMC
Stam J., Bartel S., Bischoff R., Wolters J.C. Isolation of Extracellular Vesicles with Combined Enrichment Methods. J. Chromatogr. B. 2021;1169:122604. doi: 10.1016/j.jchromb.2021.122604. PubMed DOI
Anderson W., Kozak D., Coleman V.A., Jämting Å.K., Trau M. A Comparative Study of Submicron Particle Sizing Platforms: Accuracy, Precision and Resolution Analysis of Polydisperse Particle Size Distributions. J. Colloid Interface Sci. 2013;405:322–330. doi: 10.1016/j.jcis.2013.02.030. PubMed DOI
Szatanek R., Baj-Krzyworzeka M., Zimoch J., Lekka M., Siedlar M., Baran J. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int. J. Mol. Sci. 2017;18:1153. doi: 10.3390/ijms18061153. PubMed DOI PMC
Vogel R., Savage J., Muzard J., Camera G.D., Vella G., Law A., Marchioni M., Mehn D., Geiss O., Peacock B., et al. Measuring Particle Concentration of Multimodal Synthetic Reference Materials and Extracellular Vesicles with Orthogonal Techniques: Who Is up to the Challenge? J. Extracell. Vesicles. 2021;10:e12052. doi: 10.1002/jev2.12052. PubMed DOI PMC
Akers J.C., Ramakrishnan V., Nolan J.P., Duggan E., Fu C.-C., Hochberg F.H., Chen C.C., Carter B.S. Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF) PLoS ONE. 2016;11:e0149866. doi: 10.1371/journal.pone.0149866. PubMed DOI PMC
Kuharić J., Grabušić K., Tokmadžić V.S., Štifter S., Tulić K., Shevchuk O., Lučin P., Šustić A. Severe Traumatic Brain Injury Induces Early Changes in the Physical Properties and Protein Composition of Intracranial Extracellular Vesicles. J. Neurotrauma. 2019;36:190–200. doi: 10.1089/neu.2017.5515. PubMed DOI
Sharma S., LeClaire M., Gimzewski J.K. Ascent of Atomic Force Microscopy as a Nanoanalytical Tool for Exosomes and Other Extracellular Vesicles. Nanotechnology. 2018;29:132001. doi: 10.1088/1361-6528/aaab06. PubMed DOI
Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Matthies D., Lee N.Y.J., Gatera I., Pasolli H.A., Zhao X., Liu H., Walpita D., Liu Z., Yu Z., Ioannou M.S. Microdomains Form on the Luminal Face of Neuronal Extracellular Vesicle Membranes. Sci. Rep. 2020;10:11953. doi: 10.1038/s41598-020-68436-x. PubMed DOI PMC
Malenica M., Vukomanović M., Kurtjak M., Masciotti V., Dal Zilio S., Greco S., Lazzarino M., Krušić V., Perčić M., Jelovica Badovinac I., et al. Perspectives of Microscopy Methods for Morphology Characterisation of Extracellular Vesicles from Human Biofluids. Biomedicines. 2021;9:603. doi: 10.3390/biomedicines9060603. PubMed DOI PMC
Gazze S.A., Thomas S.J., Garcia-Parra J., James D.W., Rees P., Marsh-Durban V., Corteling R., Gonzalez D., Conlan R.S., Francis L.W. High Content, Quantitative AFM Analysis of the Scalable Biomechanical Properties of Extracellular Vesicles. Nanoscale. 2021;13:6129–6141. doi: 10.1039/D0NR09235E. PubMed DOI
Krušić Alić V., Malenica M., Biberić M., Zrna S., Valenčić L., Šuput A., Kalagac Fabris L., Wechtersbach K., Kojc N., Kurtjak M., et al. Extracellular Vesicles from Human Cerebrospinal Fluid Are Effectively Separated by Sepharose CL-6B—Comparison of Four Gravity-Flow Size Exclusion Chromatography Methods. Biomedicines. 2022;10:785. doi: 10.3390/biomedicines10040785. PubMed DOI PMC
Skliar M., Chernyshev V.S. Imaging of Extracellular Vesicles by Atomic Force Microscopy. J. Vis. Exp. 2019;151:e59254. doi: 10.3791/59254. PubMed DOI
Yuana Y., Oosterkamp T.H., Bahatyrova S., Ashcroft B., Rodriguez P.G., Bertina R.M., Osanto S. Atomic Force Microscopy: A Novel Approach to the Detection of Nanosized Blood Microparticles. J. Thromb. Haemost. 2010;8:315–323. doi: 10.1111/j.1538-7836.2009.03654.x. PubMed DOI
Dubochet J., Adrian M., Chang J.J., Homo J.C., Lepault J., McDowall A.W., Schultz P. Cryo-Electron Microscopy of Vitrified Specimens. Q. Rev. Biophys. 1988;21:129–228. doi: 10.1017/S0033583500004297. PubMed DOI
Tzaridis T., Bachurski D., Liu S., Surmann K., Babatz F., Gesell Salazar M., Völker U., Hallek M., Herrlinger U., Vorberg I., et al. Extracellular Vesicle Separation Techniques Impact Results from Human Blood Samples: Considerations for Diagnostic Applications. Int. J. Mol. Sci. 2021;22:9211. doi: 10.3390/ijms22179211. PubMed DOI PMC
Emelyanov A., Shtam T., Kamyshinsky R., Garaeva L., Verlov N., Miliukhina I., Kudrevatykh A., Gavrilov G., Zabrodskaya Y., Pchelina S., et al. Cryo-Electron Microscopy of Extracellular Vesicles from Cerebrospinal Fluid. PLoS ONE. 2020;15:e0227949. doi: 10.1371/journal.pone.0227949. PubMed DOI PMC
Issman L., Brenner B., Talmon Y., Aharon A. Cryogenic Transmission Electron Microscopy Nanostructural Study of Shed Microparticles. PLoS ONE. 2013;8:e83680. doi: 10.1371/journal.pone.0083680. PubMed DOI PMC
Harrington M.G., Fonteh A.N., Oborina E., Liao P., Cowan R.P., McComb G., Chavez J.N., Rush J., Biringer R.G., Hühmer A.F. The Morphology and Biochemistry of Nanostructures Provide Evidence for Synthesis and Signaling Functions in Human Cerebrospinal Fluid. Cereb. Fluid Res. 2009;6:10. doi: 10.1186/1743-8454-6-10. PubMed DOI PMC
Ayache J., Beaunier L., Boumendil J., Ehret G., Laub D. Sample Preparation Handbook for Transmission Electron Microscopy. 1st ed. Springer; New York, NY, USA: 2010.
Busatto S., Yang Y., Walker S.A., Davidovich I., Lin W.-H., Lewis-Tuffin L., Anastasiadis P.Z., Sarkaria J., Talmon Y., Wurtz G., et al. Brain Metastases-Derived Extracellular Vesicles Induce Binding and Aggregation of Low-Density Lipoprotein. J. Nanobiotechnol. 2020;18:162. doi: 10.1186/s12951-020-00722-2. PubMed DOI PMC
Peruzzotti-Jametti L., Bernstock J.D., Willis C.M., Manferrari G., Rogall R., Fernandez-Vizarra E., Williamson J.C., Braga A., van den Bosch A., Leonardi T., et al. Neural Stem Cells Traffic Functional Mitochondria via Extracellular Vesicles. PLoS Biol. 2021;19:e3001166. doi: 10.1371/journal.pbio.3001166. PubMed DOI PMC
Gallart-Palau X., Serra A., Wong A.S.W., Sandin S., Lai M.K.P., Chen C.P., Kon O.L., Sze S.K. Extracellular Vesicles Are Rapidly Purified from Human Plasma by PRotein Organic Solvent PRecipitation (PROSPR) Sci. Rep. 2015;5:14664. doi: 10.1038/srep14664. PubMed DOI PMC
Linares R., Tan S., Gounou C., Arraud N., Brisson A.R. High-Speed Centrifugation Induces Aggregation of Extracellular Vesicles. J. Extracell. Vesicles. 2015;4:29509. doi: 10.3402/jev.v4.29509. PubMed DOI PMC
Sharma S., Rasool H.I., Palanisamy V., Mathisen C., Schmidt M., Wong D.T., Gimzewski J.K. Structural-Mechanical Characterization of Nanoparticle Exosomes in Human Saliva, Using Correlative AFM, FESEM, and Force Spectroscopy. ACS Nano. 2010;4:1921–1926. doi: 10.1021/nn901824n. PubMed DOI PMC
Bairamukov V.Y., Bukatin A.S., Kamyshinsky R.A., Burdakov V.S., Pichkur E.B., Shtam T.A., Starodubtseva M.N. Nanomechanical Characterization of Exosomes and Concomitant Nanoparticles from Blood Plasma by PeakForce AFM in Liquid. Biochim. Biophys. Acta Gen. Subj. 2022;1866:130139. doi: 10.1016/j.bbagen.2022.130139. PubMed DOI
Yates A.G., Pink R.C., Erdbrügger U., Siljander P.R., Dellar E.R., Pantazi P., Akbar N., Cooke W.R., Vatish M., Dias-Neto E., et al. In Sickness and in Health: The Functional Role of Extracellular Vesicles in Physiology and Pathology In Vivo. Part I: Health and Normal Physiology. J. Extracell. Vesicles. 2022;11:e12151. doi: 10.1002/jev2.12151. PubMed DOI PMC
Yates A.G., Pink R.C., Erdbrügger U., Siljander P.R., Dellar E.R., Pantazi P., Akbar N., Cooke W.R., Vatish M., Dias-Neto E., et al. In Sickness and in Health: The Functional Role of Extracellular Vesicles in Physiology and Pathology in Vivo. Part II: Pathology. J. Extracell. Vesicles. 2022;11:e12190. doi: 10.1002/jev2.12190. PubMed DOI PMC