Somatic Mutations in Exon 7 of the TP53 Gene in Index Colorectal Lesions Are Associated with the Early Occurrence of Metachronous Adenoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-31909A
Ministry of health, Czech Republic
PubMed
35740488
PubMed Central
PMC9221022
DOI
10.3390/cancers14122823
PII: cancers14122823
Knihovny.cz E-zdroje
- Klíčová slova
- TP53, colonoscopy, colorectal adenomas, colorectal cancer, index lesion, metachronous lesion, synchronous lesion, tumor heterogeneity,
- Publikační typ
- časopisecké články MeSH
(1) Background: this prospective study was focused on detailed analysis of the mutation heterogeneity in colorectal lesions removed during baseline (index) colonoscopy to identify patients at high risk of early occurrence of metachronous adenomas. (2) Methods: a total of 120 patients after endoscopic therapy of advanced colorectal neoplasia size ≥10 mm (index lesion) with subsequent surveillance colonoscopy after 10-18 months were included. In total, 143 index lesions and 84 synchronous lesions in paraffin blocks were divided into up to 30 samples. In each of them, the detection of somatic mutations in 11 hot spot gene loci was performed. Statistical analysis to correlate the mutation profiles and the degree of heterogeneity of the lesions with the risk of metachronous adenoma occurrence was undertaken. (3) Results: mutation in exon 7 of the TP53 gene found in the index lesion significantly correlated with the early occurrence of metachronous adenoma (log-rank test p = 0.003, hazard ratio 2.73, 95% confidence interval 1.14-6.56). We did not find an association between the risk of metachronous adenomas and other markers monitored. (4) Conclusions: the findings of this study could lead to an adjustment of existing recommendations for surveillance colonoscopies in a specific group of patients with mutations in exon 7 of the TP53 gene in an index lesion, where a shortening of surveillance interval may be warranted.
Zobrazit více v PubMed
Ferlay J., Laversanne M., Ervik M., Lam F., Colombet M., Mery L., Piñeros M., Znaor A., Soerjomataram I., Bray F. Global Cancer Observatory: Cancer Tomorrow. International Agency for Research on Cancer; Lyon, France: 2020. [(accessed on 13 April 2022)]. Available online: https://gco.iarc.fr/tomorrow.
Brenner H., Chang-Claude J., Seiler C.M., Rickert A., Hoffmeister M. Protection from colorectal cancer after colonoscopy: A population-based, case-control study. Ann. Intern. Med. 2011;154:22–30. doi: 10.7326/0003-4819-154-1-201101040-00004. PubMed DOI
Hassan C., Antonelli G., Dumonceau J.M., Regula J., Bretthauer M., Chaussade S., Dekker E., Ferlitsch M., Gimeno-Garcia A., Jover R., et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline-Update 2020. Endoscopy. 2020;52:687–700. doi: 10.1055/a-1185-3109. PubMed DOI
Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252. PubMed DOI PMC
Vaqué J.P., Martínez N., Varela I., Fernández F., Mayorga M., Derdak S., Beltrán S., Moreno T., Almaraz C., De Las Heras G., et al. Colorectal adenomas contain multiple somatic mutations that do not coincide with synchronous adenocarcinoma specimens. PLoS ONE. 2015;10:e0119946. PubMed PMC
Lee S.H., Jung S.H., Kim T.M., Rhee J.K., Park H.C., Kim M.S., Kim S.S., An C.H., Lee S.H., Chung Y.J. Whole-exome sequencing identified mutational profiles of high-grade colon adenomas. Oncotarget. 2017;8:6579–6588. doi: 10.18632/oncotarget.14172. PubMed DOI PMC
Lin S.H., Raju G.S., Huff C., Ye Y., Gu J., Chen J.S., Hildebrandt M.A.T., Liang H., Menter D.G., Morris J., et al. The somatic mutation landscape of premalignant colorectal adenoma. Gut. 2018;67:1299–1305. doi: 10.1136/gutjnl-2016-313573. PubMed DOI PMC
Lee S.H., Yoo J., Song Y.S., Lim C.H., Kim T.M. Mutation analysis of colorectal and gastric carcinomas originating from adenomas: Insights into genomic evolution associated with malignant progression. Cancers. 2020;12:325. doi: 10.3390/cancers12020325. PubMed DOI PMC
Diaz L.A., Jr., Williams R.T., Wu J., Kinde I., Hecht J.R., Berlin J., Allen B., Bozic I., Reiter J.G., Nowak M.A., et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–540. doi: 10.1038/nature11219. PubMed DOI PMC
Misale S., Yaeger R., Hobor S., Scala E., Janakiraman M., Liska D., Valtorta E., Schiavo R., Buscarino M., Siravegna G., et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–536. doi: 10.1038/nature11156. PubMed DOI PMC
Yaeger R., Cowell E., Chou J.F., Gewirtz A.N., Borsu L., Vakiani E., Solit D.B., Rosen N., Capanu M., Ladanyi M., et al. RAS mutations affect pattern of metastatic spread and increase propensity for brain metastasis in colorectal cancer. Cancer. 2015;121:1195–1203. doi: 10.1002/cncr.29196. PubMed DOI PMC
Schweiger T., Liebmann-Reindl S., Glueck O., Starlinger P., Laengle J., Birner P., Klepetko W., Pils D., Streubel B., Hoetzenecker K. Mutational profile of colorectal cancer lung metastases and paired primary tumors by targeted next generation sequencing: Implications on clinical outcome after surgery. J. Thorac. Dis. 2018;10:6147–6157. doi: 10.21037/jtd.2018.10.72. PubMed DOI PMC
COSMIC Database. [(accessed on 13 April 2022)]. Available online: https://cancer.sanger.ac.uk.
Benešová L., Hálková T., Ptáčková R., Semyakina A., Menclová K., Pudil J., Ryska M., Levý M., Šimša J., Pazdírek F., et al. Significance of postoperative follow-up of patients with metastatic colorectal cancer using circulating tumor DNA. World J. Gastroenterol. 2019;25:6939–6948. doi: 10.3748/wjg.v25.i48.6939. PubMed DOI PMC
Benesova L., Belsanova B., Kramar F., Halkova T., Benes V., Minarik M. Application of denaturing capillary electrophoresis for the detection of prognostic mutations in isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 genes in brain tumors. J. Sep. Sci. 2018;41:2819–2827. doi: 10.1002/jssc.201701473. PubMed DOI
Losi L., Baisse B., Bouzourene H., Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis. 2005;26:916–922. doi: 10.1093/carcin/bgi044. PubMed DOI
Hershkovitz D., Simon E., Bick T., Prinz E., Noy S., Sabo E., Ben-Izhak O., Vieth M. Adenoma and carcinoma components in colonic tumors show discordance for KRAS mutation. Hum. Pathol. 2014;45:1866–1871. doi: 10.1016/j.humpath.2014.05.005. PubMed DOI
Cappellesso R., Lo Mele M., Munari G., Rosa-Rizzotto E., Guido E., De Lazzari F., Pilati P., Tonello M., Farinati F., Realdon S. Molecular characterization of “sessile serrated” adenoma to carcinoma transition in six early colorectal cancers. Pathol. Res. Pract. 2019;215:957–962. doi: 10.1016/j.prp.2019.02.001. PubMed DOI
Harada T., Yamamoto E., Yamano H.O., Aoki H., Matsushita H.O., Yoshikawa K., Takagi R., Harada E., Tanaka Y., Yoshida Y., et al. Surface microstructures are associated with mutational intratumoral heterogeneity in colorectal tumors. J. Gastroenterol. 2018;53:1241–1252. doi: 10.1007/s00535-018-1481-z. PubMed DOI
Xi X., Fu Z., Liu T., Lin Y., Wu W., Li J., Luo M., Zhang B. Establishment and Verification of Scoring System for Colorectal Adenoma Recurrence. Risk Manag. Healthc. Policy. 2021;14:4545–4552. doi: 10.2147/RMHP.S316408. PubMed DOI PMC
Kandoth C., McLellan M.D., Vandin F., Ye K., Niu B., Lu C., Xie M., Zhang Q., McMichael J.F., Wyczalkowski M.A., et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339. doi: 10.1038/nature12634. PubMed DOI PMC
Robles A.I., Jen J., Harris C.C. Clinical Outcomes of TP53 Mutations in Cancers. Cold Spring Harb. Perspect. Med. 2016;6:a026294. doi: 10.1101/cshperspect.a026294. PubMed DOI PMC
Rivlin N., Brosh R., Oren M., Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011;2:466–474. doi: 10.1177/1947601911408889. PubMed DOI PMC
Nakayama M., Oshima M. Mutant p53 in colon cancer. J. Mol. Cell Biol. 2019;11:267–276. doi: 10.1093/jmcb/mjy075. PubMed DOI PMC
Gafà R., Lanza G. Espressione della proteina p53 nella sequenza adenoma-carcinoma del colon-retto [Expression of protein p53 in the adenoma-colorectal carcinoma sequence] Pathologica. 1998;90:351–356. (In Italian) PubMed
Saleh H.A., Aburashed A., Bober P., Tabaczka P. P53 protein immunohistochemical expression in colonic adenomas with and without associated carcinoma. Am. J. Gastroenterol. 1998;93:980–984. doi: 10.1111/j.1572-0241.1998.00292.x. PubMed DOI
Chang P.Y., Chen J.S., Chang S.C., Wang M.C., Chang N.C., Wen Y.H., Tsai W.S., Liu W.H., Liu H.L., Lu J.J. Acquired somatic TP53 or PIK3CA mutations are potential predictors of when polyps evolve into colorectal cancer. Oncotarget. 2017;8:72352–72362. doi: 10.18632/oncotarget.20376. PubMed DOI PMC
Minarikova P., Benesova L., Halkova T., Belsanova B., Suchanek S., Cyrany J., Tuckova I., Bures J., Zavoral M., Minarik M. Longitudinal molecular characterization of endoscopic specimens from colorectal lesions. World J. Gastroenterol. 2016;22:4936–4945. doi: 10.3748/wjg.v22.i20.4936. PubMed DOI PMC
Iniesta P., Vega F.J., Caldés T., Massa M., de Juan C., Cerdán F.J., Sánchez A., López J.A., Torres A.J., Balibrea J.L., et al. p53 exon 7 mutations as a predictor of poor prognosis in patients with colorectal cancer. Cancer Lett. 1998;130:153–160. doi: 10.1016/S0304-3835(98)00138-4. PubMed DOI
Vidaurreta M., Maestro M.L., Sanz-Casla M.T., Rafael S., Veganzones S., de la Orden V., Cerdán J., Arroyo M., Torres A. Colorectal carcinoma prognosis can be predicted by alterations in gene p53 exons 5 and 8. Int. J. Colorectal. Dis. 2008;23:581–586. doi: 10.1007/s00384-008-0454-8. PubMed DOI
Juárez M., Egoavil C., Rodríguez-Soler M., Hernández-Illán E., Guarinos C., García-Martínez A., Alenda C., Giner-Calabuig M., Murcia O., Mangas C., et al. KRAS and BRAF somatic mutations in colonic polyps and the risk of metachronous neoplasia. PLoS ONE. 2017;12:e0184937. doi: 10.1371/journal.pone.0184937. PubMed DOI PMC
Speroni A.H., Vanzulli S.I., Meiss R.P. Adenomas of the colon: Overexpression of p53 protein and risk factors. Endoscopy. 1998;30:623–626. doi: 10.1055/s-2007-1001368. PubMed DOI
Remvikos Y., Laurent-Puig P., Salmon R.J., Frelat G., Dutrillaux B., Thomas G. Simultaneous monitoring of p53 protein and DNA content of colorectal adenocarcinomas by flow cytometry. Int. J. Cancer. 1990;45:450–456. doi: 10.1002/ijc.2910450313. PubMed DOI
Rodrigues N.R., Rowan A., Smith M.E., Kerr I.B., Bodmer W.F., Gannon J.V., Lane D.P. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA. 1990;87:7555–7559. doi: 10.1073/pnas.87.19.7555. PubMed DOI PMC
Brazda V., Muller P., Brozkova K., Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun. 2006;351:499–506. doi: 10.1016/j.bbrc.2006.10.065. PubMed DOI
Cripps K.J., Purdie C.A., Carder P.J., White S., Komine K., Bird C.C., Wyllie A.H. A study of stabilisation of p53 protein versus point mutation in colorectal carcinoma. Oncogene. 1994;9:2739–2743. PubMed
Dix B., Robbins P., Carrello S., House A., Iacopetta B. Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br. J. Cancer. 1994;70:585–590. doi: 10.1038/bjc.1994.355. PubMed DOI PMC