Combined Approach to Leukemic Differentiation Using Transcription Factor PU.1-Enhancing Agents
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-03586S
Czech Science Foundation
NV19-08-00144, NU21-08-00312
Ministry of Health
GAUK 1672119 , SVV260521 , UNCE/MED/016 , Progres Q26
Charles University
PubMed
35743167
PubMed Central
PMC9224232
DOI
10.3390/ijms23126729
PII: ijms23126729
Knihovny.cz E-resources
- Keywords
- 5-Azacytidine, Celastrol, microRNA miR-155, transcription factor PU.1,
- MeSH
- Leukemia, Myeloid, Acute * drug therapy genetics MeSH
- Cell Differentiation genetics MeSH
- Humans MeSH
- MicroRNAs * genetics metabolism MeSH
- Proto-Oncogene Proteins genetics metabolism MeSH
- Gene Expression Regulation, Leukemic MeSH
- Trans-Activators metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MicroRNAs * MeSH
- MIRN155 microRNA, human MeSH Browser
- proto-oncogene protein Spi-1 MeSH Browser
- Proto-Oncogene Proteins MeSH
- Trans-Activators MeSH
The transcription factor PU.1 (Purine-rich DNA binding, SPI1) is a key regulator of hematopoiesis, whose level is influenced by transcription through its enhancers and its post-transcriptional degradation via microRNA-155 (miR-155). The degree of transcriptional regulation of the PU.1 gene is influenced by repression via DNA methylation, as well as other epigenetic factors, such as those related to progenitor maturation status, which is modulated by the transcription factor Myeloblastosis oncogene (MYB). In this work, we show that combinatorial treatment of acute myeloid leukemia (AML) cells with DNA methylation inhibitors (5-Azacytidine), MYB inhibitors (Celastrol), and anti-miR-155 (AM155) ideally leads to overproduction of PU.1. We also show that PU.1 reactivation can be compensated by miR-155 and that only a combined approach leads to sustained PU.1 derepression, even at the protein level. The triple effect on increasing PU.1 levels in myeloblasts stimulates the myeloid transcriptional program while inhibiting cell survival and proliferation, leading to partial leukemic differentiation.
See more in PubMed
Nowak D., Stewart D., Koeffler H.P. Differentiation therapy of leukemia: 3 decades of development. Blood. 2009;113:3655–3665. doi: 10.1182/blood-2009-01-198911. PubMed DOI PMC
Dahl R., Walsh J.C., Lancki D., Laslo P., Iyer S.R., Singh H., Simon M.C. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat. Immunol. 2003;4:1029–1036. doi: 10.1038/ni973. PubMed DOI
Rosenbauer F., Wagner K., Kutok J.L., Iwasaki H., Le Beau M.M., Okuno Y., Akashi K., Fiering S., Tenen D.G. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 2004;36:624–630. doi: 10.1038/ng1361. PubMed DOI
Metcalf D., Dakic A., Mifsud S., Di Rago L., Wu L., Nutt S. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2006;103:1486–1491. doi: 10.1073/pnas.0510616103. PubMed DOI PMC
Will B., Vogler T.O., Narayanagari S., Bartholdy B., Todorova T.I., da Silva Ferreira M., Chen J., Yu Y., Mayer J., Barreyro L., et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat. Med. 2015;21:1172–1181. doi: 10.1038/nm.3936. PubMed DOI PMC
Kastner P., Chan S. PU.1: A crucial and versatile player in hematopoiesis and leukemia. Int. J. Biochem. Cell Biol. 2008;40:22–27. doi: 10.1016/j.biocel.2007.01.026. PubMed DOI
Zhu X., Zhang H., Qian M., Zhao X., Yang W., Wang P., Zhang J., Wang K. The significance of low PU.1 expression in patients with acute promyelocytic leukemia. J. Hematol. Oncol. 2012;5:22. doi: 10.1186/1756-8722-5-22. PubMed DOI PMC
Leddin M., Perrod C., Hoogenkamp M., Ghani S., Assi S., Heinz S., Wilson N.K., Follows G., Schonheit J., Vockentanz L., et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117:2827–2838. doi: 10.1182/blood-2010-08-302976. PubMed DOI PMC
Ebralidze A.K., Guibal F.C., Steidl U., Zhang P., Lee S., Bartholdy B., Jorda M.A., Petkova V., Rosenbauer F., Huang G., et al. PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 2008;22:2085–2092. doi: 10.1101/gad.1654808. PubMed DOI PMC
Ghani S., Riemke P., Schonheit J., Lenze D., Stumm J., Hoogenkamp M., Lagendijk A., Heinz S., Bonifer C., Bakkers J., et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood. 2011;118:2275–2284. doi: 10.1182/blood-2011-02-335141. PubMed DOI PMC
O’Connell R.M., Rao D.S., Chaudhuri A.A., Boldin M.P., Taganov K.D., Nicoll J., Paquette R.L., Baltimore D. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med. 2008;205:585–594. doi: 10.1084/jem.20072108. PubMed DOI PMC
Waldron T., De Dominici M., Soliera A.R., Audia A., Iacobucci I., Lonetti A., Martinelli G., Zhang Y., Martinez R., Hyslop T., et al. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia. 2012;26:644–653. doi: 10.1038/leu.2011.264. PubMed DOI PMC
Basova P., Pospisil V., Savvulidi F., Burda P., Vargova K., Stanek L., Dluhosova M., Kuzmova E., Jonasova A., Steidl U., et al. Aggressive acute myeloid leukemia in PU.1/p53 double-mutant mice. Oncogene. 2014;33:4735–4745. doi: 10.1038/onc.2013.414. PubMed DOI
Vargova K., Curik N., Burda P., Basova P., Kulvait V., Pospisil V., Savvulidi F., Kokavec J., Necas E., Berkova A., et al. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood. 2011;117:3816–3825. doi: 10.1182/blood-2010-05-285064. PubMed DOI
Curik N., Burda P., Vargova K., Pospisil V., Belickova M., Vlckova P., Savvulidi F., Necas E., Hajkova H., Haskovec C., et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia. 2012;26:1804–1811. doi: 10.1038/leu.2012.47. PubMed DOI
van Riel B., Rosenbauer F. Epigenetic control of hematopoiesis: The PU.1 chromatin connection. Biol. Chem. 2014;395:1265–1274. doi: 10.1515/hsz-2014-0195. PubMed DOI
Uttarkar S., Dasse E., Coulibaly A., Steinmann S., Jakobs A., Schomburg C., Trentmann A., Jose J., Schlenke P., Berdel W.E., et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood. 2016;127:1173–1182. doi: 10.1182/blood-2015-09-668632. PubMed DOI
Bejar R., Lord A., Stevenson K., Bar-Natan M., Perez-Ladaga A., Zaneveld J., Wang H., Caughey B., Stojanov P., Getz G., et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124:2705–2712. doi: 10.1182/blood-2014-06-582809. PubMed DOI PMC
Yu X., Ruan X., Zhang J., Zhao Q. Celastrol Induces Cell Apoptosis and Inhibits the Expression of the AML1-ETO/C-KIT Oncoprotein in t(8;21) Leukemia. Molecules. 2016;21:574. doi: 10.3390/molecules21050574. PubMed DOI PMC
Coulibaly A., Haas A., Steinmann S., Jakobs A., Schmidt T.J., Klempnauer K.H. The natural anti-tumor compound Celastrol targets a Myb-C/EBPbeta-p300 transcriptional module implicated in myeloid gene expression. PLoS ONE. 2018;13:e0190934. doi: 10.1371/journal.pone.0190934. PubMed DOI PMC
Wallace J.A., Kagele D.A., Eiring A.M., Kim C.N., Hu R., Runtsch M.C., Alexander M., Huffaker T.B., Lee S.H., Patel A.B., et al. miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response. Blood. 2017;129:3074–3086. doi: 10.1182/blood-2016-09-740209. PubMed DOI PMC
Durual S., Rideau A., Ruault-Jungblut S., Cossali D., Beris P., Piguet V., Matthes T. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia. 2007;21:1050–1059. doi: 10.1038/sj.leu.2404645. PubMed DOI
Rao G., Rekhtman N., Cheng G., Krasikov T., Skoultchi A.I. Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene. 1997;14:123–131. doi: 10.1038/sj.onc.1200807. PubMed DOI
Ramaswamy K., Forbes L., Minuesa G., Gindin T., Brown F., Kharas M.G., Krivtsov A.V., Armstrong S.A., Still E., de Stanchina E., et al. Peptidomimetic blockade of MYB in acute myeloid leukemia. Nat. Commun. 2018;9:110. doi: 10.1038/s41467-017-02618-6. PubMed DOI PMC
Yusenko M., Jakobs A., Klempnauer K.H. A novel cell-based screening assay for small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etoposide as inhibitors of MYB activity. Sci. Rep. 2018;8:13159. doi: 10.1038/s41598-018-31620-1. PubMed DOI PMC
Yusenko M.V., Trentmann A., Andersson M.K., Ghani L.A., Jakobs A., Arteaga Paz M.F., Mikesch J.H., Peter von Kries J., Stenman G., Klempnauer K.H. Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett. 2020;479:61–70. doi: 10.1016/j.canlet.2020.01.039. PubMed DOI
Yin L., Cai W., Liang Y., Yao J., Wang X., Shen J. In situ self-assembly of Au-antimiR-155 nanocomplexes mediates TLR3-dependent apoptosis in hepatocellular carcinoma cells. Aging. 2020;13:241–261. doi: 10.18632/aging.103799. PubMed DOI PMC
D’Abundo L., Callegari E., Bresin A., Chillemi A., Elamin B.K., Guerriero P., Huang X., Saccenti E., Hussein E., Casciano F., et al. Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene. 2017;36:6617–6626. doi: 10.1038/onc.2017.269. PubMed DOI
Malik S., Bahal R. Investigation of PLGA nanoparticles in conjunction with nuclear localization sequence for enhanced delivery of antimiR phosphorothioates in cancer cells in vitro. J. Nanobiotechnology. 2019;17:57. doi: 10.1186/s12951-019-0490-2. PubMed DOI PMC
Medyouf H., Mossner M., Jann J.C., Nolte F., Raffel S., Herrmann C., Lier A., Eisen C., Nowak V., Zens B., et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14:824–837. doi: 10.1016/j.stem.2014.02.014. PubMed DOI
Ebinger S., Ozdemir E.Z., Ziegenhain C., Tiedt S., Castro Alves C., Grunert M., Dworzak M., Lutz C., Turati V.A., Enver T., et al. Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell. 2016;30:849–862. doi: 10.1016/j.ccell.2016.11.002. PubMed DOI PMC