Use of Flavin-Related Cellular Autofluorescence to Monitor Processes in Microbial Biotechnology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-20697S
Czech Science Foundation
PubMed
35744697
PubMed Central
PMC9231254
DOI
10.3390/microorganisms10061179
PII: microorganisms10061179
Knihovny.cz E-zdroje
- Klíčová slova
- average fluorescence lifetimes, bacteria, flavins, green autofluorescence, viability,
- Publikační typ
- časopisecké články MeSH
Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).
Zobrazit více v PubMed
Yuan G.-C., Cai L., Elowitz M., Enver T., Fan G., Guo G., Irizarry R., Kharchenko P., Kim J., Orkin S., et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 2017;18:84. doi: 10.1186/s13059-017-1218-y. PubMed DOI PMC
Croce A., Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014;58:2461. doi: 10.4081/ejh.2014.2461. PubMed DOI PMC
Yang L., Zhou Y., Zhu S., Huang T., Wu L., Yan X. Detection and Quantification of Bacterial Autofluorescence at the Single-Cell Level by a Laboratory-Built High-Sensitivity Flow Cytometer. Anal. Chem. 2012;84:1526–1532. doi: 10.1021/ac2031332. PubMed DOI
Surre J., Saint-Ruf C., Collin V., Orenga S., Ramjeet M., Matic I. Strong increase in the autofluorescence of cells signals struggle for survival. Sci. Rep. 2018;8:12088. doi: 10.1038/s41598-018-30623-2. PubMed DOI PMC
Pincus Z., Mazer T.C., Slack F.J. Autofluorescence as a measure of senescence in C. elegans: Look to red, not blue or green. Aging. 2016;8:889–898. doi: 10.18632/aging.100936. PubMed DOI PMC
Christian L., Laflamme C., Verreault D., Lavigne S., Trudel L., Ho J., Duchaine C. Autofluorescence as a viability marker for detection of bacterial spores. Front. Biosci. 2005;10:1647–1653. doi: 10.2741/1648. PubMed DOI
Bao N., Jagadeesan B., Bhunia A., Yao Y., Lu C. Quantification of bacterial cells based on autofluorescence on a microfluidic platform. J. Chromatogr. A. 2008;1181:153–158. doi: 10.1016/j.chroma.2007.12.048. PubMed DOI
Schulze K., López D.A., Tillich U.M., Frohme M. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol. 2011;11:118. doi: 10.1186/1472-6750-11-118. PubMed DOI PMC
Bhartia R., Salas E.C., Hug W.F., Reid R.D., Lane A.L., Edwards K.J., Nealson K.H. Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence. Appl. Environ. Microbiol. 2010;76:7231–7237. doi: 10.1128/AEM.00943-10. PubMed DOI PMC
Bhattacharjee A., Datta R., Gratton E., Hochbaum A.I. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Sci. Rep. 2017;7:3743. doi: 10.1038/s41598-017-04032-w. PubMed DOI PMC
Ghukasyan V.V., Kao F.J. Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide. J. Phys. Chem. C. 2009;113:11532–11540. doi: 10.1021/jp810931u. DOI
Skala M.C., Riching K.M., Gendron-Fitzpatrick A., Eickhoff J., Eliceiri K.W., White J.G., Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA. 2007;104:19494–19499. doi: 10.1073/pnas.0708425104. PubMed DOI PMC
Cramm R. Genomic View of Energy Metabolism in Ralstonia eutropha H16. J. Mol. Microbiol. Biotechnol. 2009;16:38–52. doi: 10.1159/000142893. PubMed DOI
Koller M., Bona R., Braunegg G., Hermann C., Horvat P., Kroutil M., Martinz J., Neto J., Pereira A.L., Varila P. Production of Polyhydroxyalkanoates from Agricultural Waste and Surplus Materials. Biomacromolecules. 2005;6:561–565. doi: 10.1021/bm049478b. PubMed DOI
Nyström T. The trials and tribulations of growth arrest. Trends Microbiol. 1995;3:131–136. doi: 10.1016/S0966-842X(00)88901-5. PubMed DOI
Penzer G.R. Molecular emission spectroscopy (Fluorescence and Phosphorescence) In: Brown S.B., editor. An Introduction to Spectroscopy for Biochemists. Academic Press; London, UK: 1980. pp. 70–114.
Li M., Wilkins M. Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. Bioresour. Technol. 2019;295:122254. doi: 10.1016/j.biortech.2019.122254. PubMed DOI
Saranya V., Poornimakkani, Krishnakumari M.S., Suguna P., Binuramesh C., Abirami P., Rajeswari V., Ramachandran K.B., Shenbagarathai R. Quantification of Intracellular Polyhydroxyalkanoates by Virtue of Personalized Flow Cytometry Protocol. Curr. Microbiol. 2012;65:589–594. doi: 10.1007/s00284-012-0198-0. PubMed DOI
Karmann S., Follonier S., Bassas-Galia M., Panke S., Zinn M. Robust at-line quantification of poly(3-hydroxyalkanoate) biosynthesis by flow cytometry using a BODIPY 493/503-SYTO 62 double-staining. J. Microbiol. Methods. 2016;131:166–171. doi: 10.1016/j.mimet.2016.10.003. PubMed DOI
Wolfbeiss O.S. The fluorescence of organic natural products. In: Schulman S.G., editor. Molecular Fluorescence Spectroscopy. Methods and Applications; Part I. John Wiley & Sons; New York, NY, USA: 1985. pp. 167–370.
Peter M. UV-Visible Spectroscopy as a Tool to Study Flavoproteins. In: Chapman S.K., Reid G.A., editors. Flavoprotein Protocols. Humana Press; Totowa, NJ, USA: 1999. pp. 1–8. DOI
Mihalcescu I., Van-Melle Gateau M., Chelli B., Pinel C., Ravanat J.-L. Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates. Phys. Biol. 2015;12:066016. doi: 10.1088/1478-3975/12/6/066016. PubMed DOI
Kotaki A., Yagi K. Fluorescence Properties of Flavins in Various Solvents. J. Biochem. 1970;68:509–516. doi: 10.1093/oxfordjournals.jbchem.a129381. PubMed DOI
Zhao C., Liu L., Ge J., He Y. Ultrasensitive determination for flavin coenzyme by using a ZnO nanorod photoelectrode in a four-electrode system. Mikrochim. Acta. 2017;184:2333–2339. doi: 10.1007/s00604-017-2230-3. DOI
Valle L., Vieyra F.E.M., Borsarelli C.D. Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment. Photochem. Photobiol. Sci. 2012;11:1051–1061. doi: 10.1039/c2pp05385c. PubMed DOI
Galbán J., Sanz-Vicente I., Navarro J., De Marcos S. The intrinsic fluorescence of FAD and its application in analytical chemistry: A review. Methods Appl. Fluoresc. 2016;4:42005. doi: 10.1088/2050-6120/4/4/042005. PubMed DOI
Albani J.R. Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies. Elsevier; Amsterdam, The Netherlands: 2004. Fluorophores: Descriptions and Properties; pp. 99–140. DOI
Schmid J., Hoenes K., Vatter P., Hessling M. Antimicrobial Effect of Visible Light—Photoinactivation of Legionella rubrilucens by Irradiation at 450, 470, and 620 nm. Antibiotics. 2019;8:187. doi: 10.3390/antibiotics8040187. PubMed DOI PMC
Crocker L., Fruk L. Flavin Conjugated Polydopamine Nanoparticles Displaying Light-Driven Monooxygenase Activity. Front. Chem. 2019;7:278. doi: 10.3389/fchem.2019.00278. PubMed DOI PMC
Pan Y.-L. Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. J. Quant. Spectrosc. Radiat. Transf. 2015;150:12–35. doi: 10.1016/j.jqsrt.2014.06.007. DOI
Chen R., Wu R., Zhang G., Gao Y., Xiao L., Jia S. Electron Transfer-Based Single Molecule Fluorescence as a Probe for Nano-Environment Dynamics. Sensors. 2014;14:2449–2467. doi: 10.3390/s140202449. PubMed DOI PMC
Barrio J.R., Tolman G.L., Leonard N.J., Spencer R.D., Weber G. Flavin 1, N 6 -ethenoadenine dinucleotide: Dynamic and static quenching of fluorescence. Proc. Natl. Acad. Sci. USA. 1973;70:941–943. doi: 10.1073/pnas.70.3.941. PubMed DOI PMC
Islam S., Honma M., Nakabayashi T., Kinjo M., Ohta N. pH Dependence of the Fluorescence Lifetime of FAD in Solution and in Cells. Int. J. Mol. Sci. 2013;14:1952–1963. doi: 10.3390/ijms14011952. PubMed DOI PMC
Berg P.A.V.D., van Hoek A., Visser A.J. Evidence for a Novel Mechanism of Time-Resolved Flavin Fluorescence Depolarization in Glutathione Reductase. Biophys. J. 2004;87:2577–2586. doi: 10.1529/biophysj.104.040030. PubMed DOI PMC
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Wang Y., Dai T., Gu Y. Light-Based Diagnosis and Treatment of Infectious Diseases. SPIE; San Francisco, CA, USA: 2018. Antimicrobial blue light inactivation of Neisseria gonorrhoeae. DOI
Li G., Glusac K.D. Light-triggered proton and electron transfer in flavin cofactors. J. Phys. Chem. A. 2008;112:4573–4583. doi: 10.1021/jp7117218. PubMed DOI
Stiefel P., Schmidt-Emrich S., Maniura-Weber K., Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36. doi: 10.1186/s12866-015-0376-x. PubMed DOI PMC
Williams S., Hong Y., Danavall D., Howard-Jones M., Gibson D., Frischer M., Verity P. Distinguishing between living and nonliving bacteria: Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J. Microbiol. Methods. 1998;32:225–236. doi: 10.1016/S0167-7012(98)00014-1. DOI
Boulos L., Prévost M., Barbeau B., Coallier J., Desjardins R. LIVE/DEAD®BacLight™: Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods. 1999;37:77–86. doi: 10.1016/S0167-7012(99)00048-2. PubMed DOI
Rosenberg M., Azevedo N.F., Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019;9:6483. doi: 10.1038/s41598-019-42906-3. PubMed DOI PMC
Shi L., Günther S., Hübschmann T., Wick L.Y., Harms H., Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytom. Part A. 2007;71:592–598. doi: 10.1002/cyto.a.20402. PubMed DOI
Davey H.M., Hexley P. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ. Microbiol. 2010;13:163–171. doi: 10.1111/j.1462-2920.2010.02317.x. PubMed DOI
Gião M.S., Wilks S.A., Azevedo N.F., Vieira M.J., Keevil C.W. Validation of SYTO 9/Propidium Iodide Uptake for Rapid Detection of Viable but Noncultivable Legionella pneumophila. Microb. Ecol. 2008;58:56–62. doi: 10.1007/s00248-008-9472-x. PubMed DOI
Pletnev S., Pletneva N.V., Souslova E.A., Chudakov D., Lukyanov S., Wlodawer A., Dauter Z., Pletnev V. Structural basis for bathochromic shift of fluorescence in far-red fluorescent proteins eqFP650 and eqFP670. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012;68:1088–1097. doi: 10.1107/S0907444912020598. PubMed DOI PMC
Spahn C., Glaesmann M., Grimm J.B., Ayala A., Lavis L.D., Heilemann M. A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels. Sci. Rep. 2018;8:14768. doi: 10.1038/s41598-018-33052-3. PubMed DOI PMC
Manzo N., Di Luccia B., Isticato R., D’Apuzzo E., De Felice M., Ricca E. Pigmentation and Sporulation Are Alternative Cell Fates in Bacillus pumilus SF214. PLoS ONE. 2013;8:e62093. doi: 10.1371/journal.pone.0062093. PubMed DOI PMC
Wang J., Bakken L. Screening of Soil Bacteria for Poly-β-Hydroxybutyric Acid Production and Its Role in the Survival of Starvation. Microb. Ecol. 1998;35:94–101. doi: 10.1007/s002489900063. PubMed DOI
Martin K., editor. Recent Advances in Biotechnology. Bentham Science Publishers; Sharjah, United Arab Emirates: 2016.
García-Torreiro M., López-Abelairas M., Lu-Chau T.A., Lema J. Application of flow cytometry for monitoring the production of poly(3-hydroxybutyrate) by Halomonas boliviensis. Biotechnol. Prog. 2016;33:276–284. doi: 10.1002/btpr.2373. PubMed DOI
Karmann S., Panke S., Zinn M. The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation. Bioengineering. 2017;4:58. doi: 10.3390/bioengineering4020058. PubMed DOI PMC
Bhagowati P., Pradhan S., Dash H.R., Das S. Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic by Bacillus spp. Biosci. Biotechnol. Biochem. 2015;79:1454–1463. doi: 10.1080/09168451.2015.1034651. PubMed DOI
Biernacki M., Marzec M., Roick T., Pätz R., Baronian K., Bode R., Kunze G. Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microb. Cell Factories. 2017;16:144. doi: 10.1186/s12934-017-0751-4. PubMed DOI PMC
Kacmar J., Carlson R., Balogh S.J., Srienc F. Staining and quantification of poly-3-hydroxybutyrate inSaccharomyces cerevisiae andCupriavidus necator cell populations using automated flow cytometry. Cytom. Part A. 2005;69:27–35. doi: 10.1002/cyto.a.20197. PubMed DOI
Kadouri D., Jurkevitch E., Okon Y., Castro-Sowinski S. Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005;31:55–67. doi: 10.1080/10408410590899228. PubMed DOI
Jendrossek D., Handrick R. Microbial Degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol. 2002;56:403–432. doi: 10.1146/annurev.micro.56.012302.160838. PubMed DOI
Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. Eur. J. Lipid Sci. Technol. 2019;121:1900101. doi: 10.1002/ejlt.201900101. DOI
Chan R.T., Marçal H., Ahmed T., Russell R.A., Holden P.J., Foster L.J.R. Poly(ethylene glycol)-modulated cellular biocompatibility of polyhydroxyalkanoate films. Polym. Int. 2013;62:884–892. doi: 10.1002/pi.4451. DOI
Wahl A., Schuth N., Pfeiffer D., Nussberger S., Jendrossek D. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol. 2012;12:262. doi: 10.1186/1471-2180-12-262. PubMed DOI PMC
Pfeiffer D., Wahl A., Jendrossek D. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol. Microbiol. 2011;82:936–951. doi: 10.1111/j.1365-2958.2011.07869.x. PubMed DOI
Durner R., Witholt B., Egli T. Accumulation of Poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl. Environ. Microbiol. 2000;66:3408–3414. doi: 10.1128/AEM.66.8.3408-3414.2000. PubMed DOI PMC
Trotsenko Y.A. Biosynthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Its Regulation in Bacteria. Microbiology. 2000;69:635–645. doi: 10.1023/A:1026641821583. DOI
Lee S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996;49:1–14. doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P. PubMed DOI
Stubbe J., Tian J., He A., Sinskey A.J., Lawrence A.G., Liu P. NONTEMPLATE-DEPENDENT POLYMERIZATION PROCESSES: Polyhydroxyalkanoate Synthases as a Paradigm. Annu. Rev. Biochem. 2005;74:433–480. doi: 10.1146/annurev.biochem.74.082803.133013. PubMed DOI
Ruiz J.A., López N.I., Fernández R.O., Méndez B.S. Polyhydroxyalkanoate Degradation Is Associated with Nucleotide Accumulation and Enhances Stress Resistance and Survival of Pseudomonas oleovorans in Natural Water Microcosms. Appl. Environ. Microbiol. 2001;67:225–230. doi: 10.1128/AEM.67.1.225-230.2001. PubMed DOI PMC
Roohi, Zaheer M.R., Kuddus M. PHB (poly-β-hydroxybutyrate) and its enzymatic degradation. Polym. Adv. Technol. 2017;29:30–40. doi: 10.1002/pat.4126. DOI
Höfer P., Vermette P., Groleau D. Introducing a new Bioengineered Bug: Methylobacterium extorquens tuned as a microbial bioplastic factory. Bioeng. Bugs. 2011;2:71–79. doi: 10.4161/bbug.2.2.15009. PubMed DOI
Kocharin K., Chen Y., Siewers V., Nielsen J. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express. 2012;2:52. doi: 10.1186/2191-0855-2-52. PubMed DOI PMC
Rutter J., Winge D.R., Schiffman J.D. Succinate dehydrogenase—Assembly, regulation and role in human disease. Mitochondrion. 2010;10:393–401. doi: 10.1016/j.mito.2010.03.001. PubMed DOI PMC
Wang Q., Yu H., Xia Y., Kang Z., Qi Q. Complete PHB mobilization in Escherichia coli enhances the stress tolerance: A potential biotechnological application. Microb. Cell Factories. 2009;8:47. doi: 10.1186/1475-2859-8-47. PubMed DOI PMC
Delfino I., Esposito R., Portaccio M., Lepore M. Dynamical and structural properties of flavin adenine dinucleotide in aqueous solutions and bound to free and sol–gel immobilized glucose oxidase. J. Sol Gel Sci. Technol. 2016;82:239–252. doi: 10.1007/s10971-016-4263-1. DOI
Hussain S., Malik A.H., Iyer P.K. FRET-assisted selective detection of flavins via cationic conjugated polyelectrolyte under physiological conditions. J. Mater. Chem. B. 2016;4:4439–4446. doi: 10.1039/C6TB01350C. PubMed DOI
Hanko E., Minton N., Malys N. Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator. Sci. Rep. 2017;7:1724. doi: 10.1038/s41598-017-01850-w. PubMed DOI PMC