Boswellic Acids as Effective Antibacterial Antibiofilm Agents

. 2022 Jun 13 ; 27 (12) : . [epub] 20220613

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35744925

Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).

Zobrazit více v PubMed

Yuan L., Sadiq F.A., Wang N., Yang Z., He G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2021;61:3876–3891. doi: 10.1080/10408398.2020.1809345. PubMed DOI

Danhorn T., Fuqua C. Biofilm Formation by Plant-Associated Bacteria. Annu. Rev. Microbiol. 2007;61:401–422. doi: 10.1146/annurev.micro.61.080706.093316. PubMed DOI

Zhao X., Zhao F., Wang J., Zhong N. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Adv. 2017;7:36670–36683. doi: 10.1039/C7RA02497E. DOI

Ma Y., Zhang Y., Zhang R., Guan F., Hou B., Duan J. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: A brief view. Appl. Microbiol. Biotechnol. 2020;104:515–525. doi: 10.1007/s00253-019-10184-8. PubMed DOI

Loto C. Microbiological corrosion: Mechanism, control and impact—A review. Int. J. Adv. Manuf. Technol. 2017;92:4241–4252. doi: 10.1007/s00170-017-0494-8. DOI

O’May G., Jacobsen S., Stickler D., Mobley H., Shirtliff M. Complicated Urinary Tract Infections Due to Catheters. Springer; Berlin, Germany: 2008. PubMed PMC

Chen M., Yu Q., Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int. J. Mol. Sci. 2013;14:18488–18501. doi: 10.3390/ijms140918488. PubMed DOI PMC

Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI

O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom; London, UK: 2016.

Gupta M., Singh N., Gulati M., Gupta R., Sudhakar K., Kapoor B. Herbal bioactives in treatment of inflammation: An overview. S. Afr. J. Bot. 2021;143:205–225. doi: 10.1016/j.sajb.2021.07.027. DOI

Swolana D., Kępa M., Kabała-Dzik A., Dzik R., Wojtyczka R.D. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics. 2021;10:607. doi: 10.3390/antibiotics10050607. PubMed DOI PMC

Yong Y.Y., Dykes G.A., Choo W.S. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit. Rev. Microbiol. 2019;45:201–222. doi: 10.1080/1040841X.2019.1573802. PubMed DOI

Kolouchova I., Melzoch K., Šmidrkal J., Filip V. The content of resveratrol in vegetables and fruit. Chem. Listy. 2005;99:492–495.

Aldred E.M., Buck C., Vall K. Terpenes. In: Aldred E.M., Buck C., Vall K., editors. Pharmacology. Churchill Livingstone; London, UK: 2009. pp. 167–174. Chapter 22.

Rohatgi A., Gupta P. Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm. Infect. Genet. Evol. 2021;95:105055. doi: 10.1016/j.meegid.2021.105055. PubMed DOI

Camarda L., Dayton T., Di Stefano V., Pitonzo R., Schillaci D. Chemical Composition and Antimicrobial Activity of Some Oleogum Resin Essential Oils from Boswellia SPP. (Burseraceae) Ann. Chim. 2007;97:837–844. doi: 10.1002/adic.200790068. PubMed DOI

Ayub M.A., Hanif M.A., Sarfraz R.A., Shahid M. Biological activity of Boswellia serrata Roxb. oleo gum resin essential oil: Effects of extraction by supercritical carbon dioxide and traditional methods. Int. J. Food Prop. 2018;21:808–820. doi: 10.1080/10942912.2018.1439957. DOI

Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S., Shah B.A., Taneja S.C. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol. 2011;11:54. doi: 10.1186/1471-2180-11-54. PubMed DOI PMC

Al-Harrasi A., Avula S.K., Csuk R., Das B. Cembranoids from Boswellia species. Phytochemistry. 2021;191:112897. doi: 10.1016/j.phytochem.2021.112897. PubMed DOI

Singh S., Khajuria A., Taneja S.C., Khajuria R.K., Singh J., Qazi G.N. Boswellic acids and glucosamine show synergistic effect in preclinical anti-inflammatory study in rats. Bioorgan. Med. Chem. Lett. 2007;17:3706–3711. doi: 10.1016/j.bmcl.2007.04.034. PubMed DOI

Prasad S., Kulshreshtha A., Lall R., Gupta S.C. Inflammation and ROS in arthritis: Management by Ayurvedic medicinal plants. Food Funct. 2021;12:8227–8247. doi: 10.1039/D1FO01078F. PubMed DOI

Safayhi H., Rall B., Sailer E.R., Ammon H.P. Inhibition by boswellic acids of human leukocyte elastase. J. Pharmacol. Exp. Ther. 1997;281:460–463. PubMed

Safayhi H., Sailer E.R., Ammon H.P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharmacol. 1995;47:1212–1216. PubMed

Kimmatkar N., Thawani V., Hingorani L., Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee–a randomized double blind placebo controlled trial. Phytomedicine. 2003;10:3–7. doi: 10.1078/094471103321648593. PubMed DOI

Vahabi S., Hakemi-Vala M., Gholami S. In vitro antibacterial effect of hydroalcoholic extract of Lawsonia inermis, Malva sylvestris, and Boswellia serrata on aggregatibacter actinomycetemcomitans. Adv. Biomed. Res. 2019;8:22. doi: 10.4103/abr.abr_205_18. PubMed DOI PMC

Chhibber T., Gondil V.S., Sinha V.R. Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus–Infected Burn Wound in Mice. AAPS PharmSciTech. 2020;21:43. doi: 10.1208/s12249-019-1537-2. PubMed DOI

Gillapsy A., Landolo F. In: Staphylococcus. Encyclopedia of Microbiology. 3rd ed. Schaechter M., editor. Academic Press; San Diego, CA, USA: 2009.

Mack D. Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J. Hosp. Infect. 1999;43:S113–S125. doi: 10.1016/S0195-6701(99)90074-9. PubMed DOI

Moreno M.F., Sarantinopoulos P., Tsakalidou E., De Vuyst L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006;106:1–24. doi: 10.1016/j.ijfoodmicro.2005.06.026. PubMed DOI

Cetinkaya Y., Falk P., Mayhall C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000;13:686–707. doi: 10.1128/CMR.13.4.686. PubMed DOI PMC

Pillar C.M., Gilmore M.S. Enterococcal virulence—Pathogenicity island of E. Faecalis. Front. Biosci. 2004;9:2335–2346. doi: 10.2741/1400. PubMed DOI

Sava I.G., Heikens E., Huebner J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 2010;16:533–540. doi: 10.1111/j.1469-0691.2010.03213.x. PubMed DOI

Werner G., Coque T.M., Franz C.M., Grohmann E., Hegstad K., Jensen L., van Schaik W., Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int. J. Med. Microbiol. 2013;303:360–379. doi: 10.1016/j.ijmm.2013.03.001. PubMed DOI

Hall C.W., Mah T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017;41:276–301. doi: 10.1093/femsre/fux010. PubMed DOI

Zhao X., Yu Z., Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 2020;8:425. doi: 10.3390/microorganisms8030425. PubMed DOI PMC

Bai X., Nakatsu C.H., Bhunia A.K. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods. 2021;10:2117. doi: 10.3390/foods10092117. PubMed DOI PMC

Pakbin B., Brück W.M., Rossen J.W. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 2021;22:9922. doi: 10.3390/ijms22189922. PubMed DOI PMC

Cranston D., Sidebottom E. Penicillin and the Legacy of Norman Heatley. Words By Design; Oxfordshire, UK: 2016.

Hegstad K., Mikalsen T., Coque T.M., Werner G., Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010;16:541–554. doi: 10.1111/j.1469-0691.2010.03226.x. PubMed DOI

Ledger E.V.K., Pader V., Edwards A.M. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids. Microbiology. 2017;163:1502–1508. doi: 10.1099/mic.0.000529. PubMed DOI PMC

Jamshidi-Kia F., Lorigooini Z., Amini-Khoei H. Medicinal plants: Past history and future perspective. J. HerbMed Pharmacol. 2018;7:1–7. doi: 10.15171/jhp.2018.01. DOI

Nasri H. Toxicity and safety of medicinal plants. J. HerbMed Pharmacol. 2013;2:21–22.

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC

Cowan M. Plant materials as antimicrobial agents. Chem Med. Rev. 1999;12:564–582. PubMed PMC

Lu L., Hu W., Tian Z., Yuan D., Yi G., Zhou Y., Cheng Q., Zhu J., Li M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019;14:11. doi: 10.1186/s13020-019-0232-2. PubMed DOI PMC

Gupta M., Rout P., Misra L., Gupta P., Singh N., Darokar M., Saikia D., Singh S., Bhakuni R. Chemical composition and bioactivity of Boswellia serrata Roxb. essential oil in relation to geographical variation. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2017;151:623–629. doi: 10.1080/11263504.2016.1187681. DOI

Gupta M., Kumar S., Kumar R., Kumar A., Verma R., Darokar M.P., Rout P., Pal A. Inhibition of heme detoxification pathway in malaria parasite by 3-hydroxy-11-keto-β-boswellic acid isolated from Boswellia serrata. Biomed. Pharmacother. 2021;144:112302. doi: 10.1016/j.biopha.2021.112302. PubMed DOI

Narasagoudr S.S., Hegde V.G., Chougale R.B., Masti S.P., Vootla S., Malabadi R.B. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll. 2020;109:106096. doi: 10.1016/j.foodhyd.2020.106096. DOI

Ismail I.E., Abdelnour S.A., Shehata S.A., El-Hack A., Mohamed E., El-Edel M.A., Taha A.E., Schiavitto M., Tufarelli V. Effect of dietary Boswellia serrata resin on growth performance, blood biochemistry, and cecal microbiota of growing rabbits. Front. Vet. Sci. 2019;6:471. doi: 10.3389/fvets.2019.00471. PubMed DOI PMC

Montaser M.M., El-sharnouby M.E., EL-Noubi G., El-Shaer H.M., Khalil A.A., Hassanin M., Amer S.A., El-Araby D.A. Boswellia serrata Resin Extract in Diets of Nile Tilapia, Oreochromis niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus aureus. Animals. 2021;11:446. doi: 10.3390/ani11020446. PubMed DOI PMC

Kiczorowska B., Al-Yasiry A., Samolińska W., Marek A., Pyzik E. The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livest. Sci. 2016;191:117–124. doi: 10.1016/j.livsci.2016.07.019. DOI

Mohamed S.H., Attia A.I., Reda F.M., Abd El-Hack M.E., Ismail I.E. Impacts of dietary supplementation of Boswellia serrata on growth, nutrients digestibility, immunity, antioxidant status, carcase traits and caecum microbiota of broilers. Ital. J. Anim. Sci. 2021;20:205–214. doi: 10.1080/1828051X.2021.1875336. DOI

Goodman L., Hardman J., Limbird L. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2011.

Falagas M.E., Grammatikos A.P., Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev. Anti Infect. Ther. 2008;6:593–600. doi: 10.1586/14787210.6.5.593. PubMed DOI

Ammon H.P. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72:1100–1116. doi: 10.1055/s-2006-947227. PubMed DOI

Weckesser S., Engel K., Simon-Haarhaus B., Wittmer A., Pelz K., Schempp C.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14:508–516. doi: 10.1016/j.phymed.2006.12.013. PubMed DOI

Dudek-Wicher R., Paleczny J., Kowalska-Krochmal B., Szymczyk-Ziółkowska P., Pachura N., Szumny A., Brożyna M. Activity of Liquid and Volatile Fractions of Essential Oils against Biofilm Formed by Selected Reference Strains on Polystyrene and Hydroxyapatite Surfaces. Pathogens. 2021;10:515. doi: 10.3390/pathogens10050515. PubMed DOI PMC

Tegasne C., Kapche G.D.W.F., Mawabo I.K., Talla R.M., Jouda J.-B., Happi G.M., Lenta B.N., Frese M., Abegaz B.M., Sewald N. Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle. Nat. Prod. Res. 2021;35:5199–5208. doi: 10.1080/14786419.2020.1794863. PubMed DOI

Schillaci D., Arizza V., Dayton T., Camarda L., Stefano V.D. In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils. Lett. Appl. Microbiol. 2008;47:433–438. doi: 10.1111/j.1472-765X.2008.02469.x. PubMed DOI

Samreen , Qais F.A., Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J. Biomol. Struct. Dyn. 2022:1–13. doi: 10.1080/07391102.2022.2029564. PubMed DOI

Hashemi S.M.B., Jafarpour D. Synergistic properties of Eucalyptus caesia and Dracocephalum multicaule Montbr & Auch essential oils: Antimicrobial activity against food borne pathogens and antioxidant activity in pear slices. J. Food Process. Preserv. 2020;44:e14651.

Rashan L., White A., Haulet M., Favelin N., Das P., Cock I.E. Chemical composition, antibacterial activity, and antibiotic potentiation of Boswellia sacra Flueck. oleoresin extracts from the Dhofar region of Oman. Evid. Based Complement. Altern. Med. 2021;2021:9918935. doi: 10.1155/2021/9918935. PubMed DOI PMC

Palaniappan K., Holley R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010;140:164–168. doi: 10.1016/j.ijfoodmicro.2010.04.001. PubMed DOI

Basri D., Hamid N., Ishak S., Ghazali A. Pterostilbene Reduced Post-antibiotic Effect Time of Linezolid against Methicillin-resistant Staphylococcus aureus. Indian J. Pharm. Sci. 2017;78:748–754. doi: 10.4172/pharmaceutical-sciences.1000179. DOI

Lee W.X., Basri D.F., Ghazali A.R. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria. Molecules. 2017;22:463. doi: 10.3390/molecules22030463. PubMed DOI PMC

Cavalcanti I.M.F., Menezes T.G.C., Campos L.A.d.A., Ferraz M.S., Maciel M.A.V., Caetano M.N.P., Santos-Magalhães N.S. Interaction study between vancomycin and liposomes containing natural compounds against methicillin-resistant Staphylococcus aureus clinical isolates. Braz. J. Pharm. Sci. 2018;54:e00203. doi: 10.1590/s2175-97902018000200203. DOI

Walencka E., Rozalska S., Wysokinska H., Rozalski M., Kuzma L., Rozalska B. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 2007;73:545–551. doi: 10.1055/s-2007-967179. PubMed DOI

Cock I.E. Is the pharmaceutical industry’s preoccupation with the monotherapy drug model stifling the development of effective new drug therapies? Inflammopharmacology. 2018;26:861–879. doi: 10.1007/s10787-018-0488-7. PubMed DOI

Dickson R.A., Houghton P.J., Hylands P.J., Gibbons S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother. Res. 2006;20:41–45. doi: 10.1002/ptr.1799. PubMed DOI

Morel C., Stermitz F.R., Tegos G., Lewis K. Isoflavones As Potentiators of Antibacterial Activity. J. Agric. Food Chem. 2003;51:5677–5679. doi: 10.1021/jf0302714. PubMed DOI

Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res. Notes. 2011;4:406. doi: 10.1186/1756-0500-4-406. PubMed DOI PMC

Dimkić I., Gobin I., Begić G., Antić D.R., Ristivojević P., Jurica K., Berić T., Lozo J., Abram M., Stanković S. Antibacterial activity of herbal extracts towards uropathogenic Enterococcus isolates as a natural approach in control of urinary tract infections. J. Herb. Med. 2021;28:100445. doi: 10.1016/j.hermed.2021.100445. DOI

Santiesteban-López A., Palou E., López-Malo A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol. 2007;102:486–497. doi: 10.1111/j.1365-2672.2006.03092.x. PubMed DOI

Mohamed J.A., Huang D.B. Biofilm formation by enterococci. J. Med. Microbiol. 2007;56:1581–1588. doi: 10.1099/jmm.0.47331-0. PubMed DOI

Sharma A., Biharee A., Kumar A., Jaitak V. Antimicrobial Terpenoids as a Potential Substitute in Overcoming Antimicrobial Resistance. Curr. Drug Targets. 2020;21:1476–1494. doi: 10.2174/1389450121666200520103427. PubMed DOI

Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI

Miladi H., Zmantar T., Kouidhi B., Al Qurashi Y.M.A., Bakhrouf A., Chaabouni Y., Mahdouani K., Chaieb K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 2017;112:156–163. doi: 10.1016/j.micpath.2017.09.057. PubMed DOI

Zacchino S.A., Butassi E., Cordisco E., Svetaz L.A. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine. 2017;37:14–26. doi: 10.1016/j.phymed.2017.10.021. PubMed DOI

Fleming D., Rumbaugh K.P. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017;5:15. doi: 10.3390/microorganisms5020015. PubMed DOI PMC

Guilhen C., Forestier C., Balestrino D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol. Microbiol. 2017;105:188–210. doi: 10.1111/mmi.13698. PubMed DOI

Marvasi M., Chen C., Carrazana M., Durie I.A., Teplitski M. Systematic analysis of the ability of nitric oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157: H7. AMB Express. 2014;4:42. doi: 10.1186/s13568-014-0042-y. PubMed DOI PMC

Reffuveille F., Fairfull-Smith K.E., Hancock R.E. Potentiation of ciprofloxacin action against Gram-negative bacterial biofilms by a nitroxide. Pathog. Dis. 2015;73:ftv016. doi: 10.1093/femspd/ftv016. PubMed DOI

Barraud N., Hassett D.J., Hwang S.-H., Rice S.A., Kjelleberg S., Webb J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 2006;188:7344–7353. doi: 10.1128/JB.00779-06. PubMed DOI PMC

Roizman D., Vidaillac C., Givskov M., Yang L. In vitro evaluation of biofilm dispersal as a therapeutic strategy to restore antimicrobial efficacy. Antimicrob. Agents Chemother. 2017;61:e01088-01017. doi: 10.1128/AAC.01088-17. PubMed DOI PMC

Verderosa A.D., Totsika M., Fairfull-Smith K.E. Bacterial biofilm eradication agents: A current review. Front. Chem. 2019;7:824. doi: 10.3389/fchem.2019.00824. PubMed DOI PMC

Wolfmeier H., Pletzer D., Mansour S.C., Hancock R.E. New perspectives in biofilm eradication. ACS Infect. Dis. 2018;4:93–106. doi: 10.1021/acsinfecdis.7b00170. PubMed DOI

Koo H., Allan R.N., Howlin R.P., Stoodley P., Hall-Stoodley L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017;15:740–755. doi: 10.1038/nrmicro.2017.99. PubMed DOI PMC

Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003;2:114–122. doi: 10.1038/nrd1008. PubMed DOI

McDougald D., Rice S.A., Barraud N., Steinberg P.D., Kjelleberg S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 2012;10:39–50. doi: 10.1038/nrmicro2695. PubMed DOI

Vaňková E., Paldrychová M., Kašparová P., Lokočová K., Kodeš Z., Maťátková O., Kolouchová I., Masák J. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J. Microbiol. Biotechnol. 2020;36:101. doi: 10.1007/s11274-020-02876-5. PubMed DOI

Maťátková O., Kolouchová I., Kvasničková E., Ježdík R., Masák J., Čejková A. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem. Pap. 2017;71:1471–1480. doi: 10.1007/s11696-017-0141-8. DOI

Mishra B., Wang G. Individual and Combined Effects of Engineered Peptides and Antibiotics on Pseudomonas aeruginosa Biofilms. Pharmaceuticals. 2017;10:58. doi: 10.3390/ph10030058. PubMed DOI PMC

Riss T., Moravec R., Niles A., Benink H., Worzella T., Minor L. Assay Guidance Manual. Eli Lilly & Company; The National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2004. Cell Viability Assays. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...