Boswellic Acids as Effective Antibacterial Antibiofilm Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35744925
PubMed Central
PMC9228269
DOI
10.3390/molecules27123795
PII: molecules27123795
Knihovny.cz E-zdroje
- Klíčová slova
- FIC, antibacterial, antibiotic, bacterial biofilm, boswellic acid, microbial biofilm,
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy MeSH
- Boswellia * MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- rostlinné extrakty škodlivé účinky MeSH
- triterpeny * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- boswellic acid MeSH Prohlížeč
- rostlinné extrakty MeSH
- triterpeny * MeSH
Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).
Zobrazit více v PubMed
Yuan L., Sadiq F.A., Wang N., Yang Z., He G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2021;61:3876–3891. doi: 10.1080/10408398.2020.1809345. PubMed DOI
Danhorn T., Fuqua C. Biofilm Formation by Plant-Associated Bacteria. Annu. Rev. Microbiol. 2007;61:401–422. doi: 10.1146/annurev.micro.61.080706.093316. PubMed DOI
Zhao X., Zhao F., Wang J., Zhong N. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Adv. 2017;7:36670–36683. doi: 10.1039/C7RA02497E. DOI
Ma Y., Zhang Y., Zhang R., Guan F., Hou B., Duan J. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: A brief view. Appl. Microbiol. Biotechnol. 2020;104:515–525. doi: 10.1007/s00253-019-10184-8. PubMed DOI
Loto C. Microbiological corrosion: Mechanism, control and impact—A review. Int. J. Adv. Manuf. Technol. 2017;92:4241–4252. doi: 10.1007/s00170-017-0494-8. DOI
O’May G., Jacobsen S., Stickler D., Mobley H., Shirtliff M. Complicated Urinary Tract Infections Due to Catheters. Springer; Berlin, Germany: 2008. PubMed PMC
Chen M., Yu Q., Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int. J. Mol. Sci. 2013;14:18488–18501. doi: 10.3390/ijms140918488. PubMed DOI PMC
Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI
O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom; London, UK: 2016.
Gupta M., Singh N., Gulati M., Gupta R., Sudhakar K., Kapoor B. Herbal bioactives in treatment of inflammation: An overview. S. Afr. J. Bot. 2021;143:205–225. doi: 10.1016/j.sajb.2021.07.027. DOI
Swolana D., Kępa M., Kabała-Dzik A., Dzik R., Wojtyczka R.D. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics. 2021;10:607. doi: 10.3390/antibiotics10050607. PubMed DOI PMC
Yong Y.Y., Dykes G.A., Choo W.S. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit. Rev. Microbiol. 2019;45:201–222. doi: 10.1080/1040841X.2019.1573802. PubMed DOI
Kolouchova I., Melzoch K., Šmidrkal J., Filip V. The content of resveratrol in vegetables and fruit. Chem. Listy. 2005;99:492–495.
Aldred E.M., Buck C., Vall K. Terpenes. In: Aldred E.M., Buck C., Vall K., editors. Pharmacology. Churchill Livingstone; London, UK: 2009. pp. 167–174. Chapter 22.
Rohatgi A., Gupta P. Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm. Infect. Genet. Evol. 2021;95:105055. doi: 10.1016/j.meegid.2021.105055. PubMed DOI
Camarda L., Dayton T., Di Stefano V., Pitonzo R., Schillaci D. Chemical Composition and Antimicrobial Activity of Some Oleogum Resin Essential Oils from Boswellia SPP. (Burseraceae) Ann. Chim. 2007;97:837–844. doi: 10.1002/adic.200790068. PubMed DOI
Ayub M.A., Hanif M.A., Sarfraz R.A., Shahid M. Biological activity of Boswellia serrata Roxb. oleo gum resin essential oil: Effects of extraction by supercritical carbon dioxide and traditional methods. Int. J. Food Prop. 2018;21:808–820. doi: 10.1080/10942912.2018.1439957. DOI
Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S., Shah B.A., Taneja S.C. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol. 2011;11:54. doi: 10.1186/1471-2180-11-54. PubMed DOI PMC
Al-Harrasi A., Avula S.K., Csuk R., Das B. Cembranoids from Boswellia species. Phytochemistry. 2021;191:112897. doi: 10.1016/j.phytochem.2021.112897. PubMed DOI
Singh S., Khajuria A., Taneja S.C., Khajuria R.K., Singh J., Qazi G.N. Boswellic acids and glucosamine show synergistic effect in preclinical anti-inflammatory study in rats. Bioorgan. Med. Chem. Lett. 2007;17:3706–3711. doi: 10.1016/j.bmcl.2007.04.034. PubMed DOI
Prasad S., Kulshreshtha A., Lall R., Gupta S.C. Inflammation and ROS in arthritis: Management by Ayurvedic medicinal plants. Food Funct. 2021;12:8227–8247. doi: 10.1039/D1FO01078F. PubMed DOI
Safayhi H., Rall B., Sailer E.R., Ammon H.P. Inhibition by boswellic acids of human leukocyte elastase. J. Pharmacol. Exp. Ther. 1997;281:460–463. PubMed
Safayhi H., Sailer E.R., Ammon H.P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharmacol. 1995;47:1212–1216. PubMed
Kimmatkar N., Thawani V., Hingorani L., Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee–a randomized double blind placebo controlled trial. Phytomedicine. 2003;10:3–7. doi: 10.1078/094471103321648593. PubMed DOI
Vahabi S., Hakemi-Vala M., Gholami S. In vitro antibacterial effect of hydroalcoholic extract of Lawsonia inermis, Malva sylvestris, and Boswellia serrata on aggregatibacter actinomycetemcomitans. Adv. Biomed. Res. 2019;8:22. doi: 10.4103/abr.abr_205_18. PubMed DOI PMC
Chhibber T., Gondil V.S., Sinha V.R. Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus–Infected Burn Wound in Mice. AAPS PharmSciTech. 2020;21:43. doi: 10.1208/s12249-019-1537-2. PubMed DOI
Gillapsy A., Landolo F. In: Staphylococcus. Encyclopedia of Microbiology. 3rd ed. Schaechter M., editor. Academic Press; San Diego, CA, USA: 2009.
Mack D. Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J. Hosp. Infect. 1999;43:S113–S125. doi: 10.1016/S0195-6701(99)90074-9. PubMed DOI
Moreno M.F., Sarantinopoulos P., Tsakalidou E., De Vuyst L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006;106:1–24. doi: 10.1016/j.ijfoodmicro.2005.06.026. PubMed DOI
Cetinkaya Y., Falk P., Mayhall C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000;13:686–707. doi: 10.1128/CMR.13.4.686. PubMed DOI PMC
Pillar C.M., Gilmore M.S. Enterococcal virulence—Pathogenicity island of E. Faecalis. Front. Biosci. 2004;9:2335–2346. doi: 10.2741/1400. PubMed DOI
Sava I.G., Heikens E., Huebner J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 2010;16:533–540. doi: 10.1111/j.1469-0691.2010.03213.x. PubMed DOI
Werner G., Coque T.M., Franz C.M., Grohmann E., Hegstad K., Jensen L., van Schaik W., Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int. J. Med. Microbiol. 2013;303:360–379. doi: 10.1016/j.ijmm.2013.03.001. PubMed DOI
Hall C.W., Mah T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017;41:276–301. doi: 10.1093/femsre/fux010. PubMed DOI
Zhao X., Yu Z., Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 2020;8:425. doi: 10.3390/microorganisms8030425. PubMed DOI PMC
Bai X., Nakatsu C.H., Bhunia A.K. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods. 2021;10:2117. doi: 10.3390/foods10092117. PubMed DOI PMC
Pakbin B., Brück W.M., Rossen J.W. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 2021;22:9922. doi: 10.3390/ijms22189922. PubMed DOI PMC
Cranston D., Sidebottom E. Penicillin and the Legacy of Norman Heatley. Words By Design; Oxfordshire, UK: 2016.
Hegstad K., Mikalsen T., Coque T.M., Werner G., Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010;16:541–554. doi: 10.1111/j.1469-0691.2010.03226.x. PubMed DOI
Ledger E.V.K., Pader V., Edwards A.M. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids. Microbiology. 2017;163:1502–1508. doi: 10.1099/mic.0.000529. PubMed DOI PMC
Jamshidi-Kia F., Lorigooini Z., Amini-Khoei H. Medicinal plants: Past history and future perspective. J. HerbMed Pharmacol. 2018;7:1–7. doi: 10.15171/jhp.2018.01. DOI
Nasri H. Toxicity and safety of medicinal plants. J. HerbMed Pharmacol. 2013;2:21–22.
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC
Cowan M. Plant materials as antimicrobial agents. Chem Med. Rev. 1999;12:564–582. PubMed PMC
Lu L., Hu W., Tian Z., Yuan D., Yi G., Zhou Y., Cheng Q., Zhu J., Li M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019;14:11. doi: 10.1186/s13020-019-0232-2. PubMed DOI PMC
Gupta M., Rout P., Misra L., Gupta P., Singh N., Darokar M., Saikia D., Singh S., Bhakuni R. Chemical composition and bioactivity of Boswellia serrata Roxb. essential oil in relation to geographical variation. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2017;151:623–629. doi: 10.1080/11263504.2016.1187681. DOI
Gupta M., Kumar S., Kumar R., Kumar A., Verma R., Darokar M.P., Rout P., Pal A. Inhibition of heme detoxification pathway in malaria parasite by 3-hydroxy-11-keto-β-boswellic acid isolated from Boswellia serrata. Biomed. Pharmacother. 2021;144:112302. doi: 10.1016/j.biopha.2021.112302. PubMed DOI
Narasagoudr S.S., Hegde V.G., Chougale R.B., Masti S.P., Vootla S., Malabadi R.B. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll. 2020;109:106096. doi: 10.1016/j.foodhyd.2020.106096. DOI
Ismail I.E., Abdelnour S.A., Shehata S.A., El-Hack A., Mohamed E., El-Edel M.A., Taha A.E., Schiavitto M., Tufarelli V. Effect of dietary Boswellia serrata resin on growth performance, blood biochemistry, and cecal microbiota of growing rabbits. Front. Vet. Sci. 2019;6:471. doi: 10.3389/fvets.2019.00471. PubMed DOI PMC
Montaser M.M., El-sharnouby M.E., EL-Noubi G., El-Shaer H.M., Khalil A.A., Hassanin M., Amer S.A., El-Araby D.A. Boswellia serrata Resin Extract in Diets of Nile Tilapia, Oreochromis niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus aureus. Animals. 2021;11:446. doi: 10.3390/ani11020446. PubMed DOI PMC
Kiczorowska B., Al-Yasiry A., Samolińska W., Marek A., Pyzik E. The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livest. Sci. 2016;191:117–124. doi: 10.1016/j.livsci.2016.07.019. DOI
Mohamed S.H., Attia A.I., Reda F.M., Abd El-Hack M.E., Ismail I.E. Impacts of dietary supplementation of Boswellia serrata on growth, nutrients digestibility, immunity, antioxidant status, carcase traits and caecum microbiota of broilers. Ital. J. Anim. Sci. 2021;20:205–214. doi: 10.1080/1828051X.2021.1875336. DOI
Goodman L., Hardman J., Limbird L. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2011.
Falagas M.E., Grammatikos A.P., Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev. Anti Infect. Ther. 2008;6:593–600. doi: 10.1586/14787210.6.5.593. PubMed DOI
Ammon H.P. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72:1100–1116. doi: 10.1055/s-2006-947227. PubMed DOI
Weckesser S., Engel K., Simon-Haarhaus B., Wittmer A., Pelz K., Schempp C.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14:508–516. doi: 10.1016/j.phymed.2006.12.013. PubMed DOI
Dudek-Wicher R., Paleczny J., Kowalska-Krochmal B., Szymczyk-Ziółkowska P., Pachura N., Szumny A., Brożyna M. Activity of Liquid and Volatile Fractions of Essential Oils against Biofilm Formed by Selected Reference Strains on Polystyrene and Hydroxyapatite Surfaces. Pathogens. 2021;10:515. doi: 10.3390/pathogens10050515. PubMed DOI PMC
Tegasne C., Kapche G.D.W.F., Mawabo I.K., Talla R.M., Jouda J.-B., Happi G.M., Lenta B.N., Frese M., Abegaz B.M., Sewald N. Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle. Nat. Prod. Res. 2021;35:5199–5208. doi: 10.1080/14786419.2020.1794863. PubMed DOI
Schillaci D., Arizza V., Dayton T., Camarda L., Stefano V.D. In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils. Lett. Appl. Microbiol. 2008;47:433–438. doi: 10.1111/j.1472-765X.2008.02469.x. PubMed DOI
Samreen , Qais F.A., Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J. Biomol. Struct. Dyn. 2022:1–13. doi: 10.1080/07391102.2022.2029564. PubMed DOI
Hashemi S.M.B., Jafarpour D. Synergistic properties of Eucalyptus caesia and Dracocephalum multicaule Montbr & Auch essential oils: Antimicrobial activity against food borne pathogens and antioxidant activity in pear slices. J. Food Process. Preserv. 2020;44:e14651.
Rashan L., White A., Haulet M., Favelin N., Das P., Cock I.E. Chemical composition, antibacterial activity, and antibiotic potentiation of Boswellia sacra Flueck. oleoresin extracts from the Dhofar region of Oman. Evid. Based Complement. Altern. Med. 2021;2021:9918935. doi: 10.1155/2021/9918935. PubMed DOI PMC
Palaniappan K., Holley R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010;140:164–168. doi: 10.1016/j.ijfoodmicro.2010.04.001. PubMed DOI
Basri D., Hamid N., Ishak S., Ghazali A. Pterostilbene Reduced Post-antibiotic Effect Time of Linezolid against Methicillin-resistant Staphylococcus aureus. Indian J. Pharm. Sci. 2017;78:748–754. doi: 10.4172/pharmaceutical-sciences.1000179. DOI
Lee W.X., Basri D.F., Ghazali A.R. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria. Molecules. 2017;22:463. doi: 10.3390/molecules22030463. PubMed DOI PMC
Cavalcanti I.M.F., Menezes T.G.C., Campos L.A.d.A., Ferraz M.S., Maciel M.A.V., Caetano M.N.P., Santos-Magalhães N.S. Interaction study between vancomycin and liposomes containing natural compounds against methicillin-resistant Staphylococcus aureus clinical isolates. Braz. J. Pharm. Sci. 2018;54:e00203. doi: 10.1590/s2175-97902018000200203. DOI
Walencka E., Rozalska S., Wysokinska H., Rozalski M., Kuzma L., Rozalska B. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 2007;73:545–551. doi: 10.1055/s-2007-967179. PubMed DOI
Cock I.E. Is the pharmaceutical industry’s preoccupation with the monotherapy drug model stifling the development of effective new drug therapies? Inflammopharmacology. 2018;26:861–879. doi: 10.1007/s10787-018-0488-7. PubMed DOI
Dickson R.A., Houghton P.J., Hylands P.J., Gibbons S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother. Res. 2006;20:41–45. doi: 10.1002/ptr.1799. PubMed DOI
Morel C., Stermitz F.R., Tegos G., Lewis K. Isoflavones As Potentiators of Antibacterial Activity. J. Agric. Food Chem. 2003;51:5677–5679. doi: 10.1021/jf0302714. PubMed DOI
Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res. Notes. 2011;4:406. doi: 10.1186/1756-0500-4-406. PubMed DOI PMC
Dimkić I., Gobin I., Begić G., Antić D.R., Ristivojević P., Jurica K., Berić T., Lozo J., Abram M., Stanković S. Antibacterial activity of herbal extracts towards uropathogenic Enterococcus isolates as a natural approach in control of urinary tract infections. J. Herb. Med. 2021;28:100445. doi: 10.1016/j.hermed.2021.100445. DOI
Santiesteban-López A., Palou E., López-Malo A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol. 2007;102:486–497. doi: 10.1111/j.1365-2672.2006.03092.x. PubMed DOI
Mohamed J.A., Huang D.B. Biofilm formation by enterococci. J. Med. Microbiol. 2007;56:1581–1588. doi: 10.1099/jmm.0.47331-0. PubMed DOI
Sharma A., Biharee A., Kumar A., Jaitak V. Antimicrobial Terpenoids as a Potential Substitute in Overcoming Antimicrobial Resistance. Curr. Drug Targets. 2020;21:1476–1494. doi: 10.2174/1389450121666200520103427. PubMed DOI
Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI
Miladi H., Zmantar T., Kouidhi B., Al Qurashi Y.M.A., Bakhrouf A., Chaabouni Y., Mahdouani K., Chaieb K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 2017;112:156–163. doi: 10.1016/j.micpath.2017.09.057. PubMed DOI
Zacchino S.A., Butassi E., Cordisco E., Svetaz L.A. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine. 2017;37:14–26. doi: 10.1016/j.phymed.2017.10.021. PubMed DOI
Fleming D., Rumbaugh K.P. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017;5:15. doi: 10.3390/microorganisms5020015. PubMed DOI PMC
Guilhen C., Forestier C., Balestrino D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol. Microbiol. 2017;105:188–210. doi: 10.1111/mmi.13698. PubMed DOI
Marvasi M., Chen C., Carrazana M., Durie I.A., Teplitski M. Systematic analysis of the ability of nitric oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157: H7. AMB Express. 2014;4:42. doi: 10.1186/s13568-014-0042-y. PubMed DOI PMC
Reffuveille F., Fairfull-Smith K.E., Hancock R.E. Potentiation of ciprofloxacin action against Gram-negative bacterial biofilms by a nitroxide. Pathog. Dis. 2015;73:ftv016. doi: 10.1093/femspd/ftv016. PubMed DOI
Barraud N., Hassett D.J., Hwang S.-H., Rice S.A., Kjelleberg S., Webb J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 2006;188:7344–7353. doi: 10.1128/JB.00779-06. PubMed DOI PMC
Roizman D., Vidaillac C., Givskov M., Yang L. In vitro evaluation of biofilm dispersal as a therapeutic strategy to restore antimicrobial efficacy. Antimicrob. Agents Chemother. 2017;61:e01088-01017. doi: 10.1128/AAC.01088-17. PubMed DOI PMC
Verderosa A.D., Totsika M., Fairfull-Smith K.E. Bacterial biofilm eradication agents: A current review. Front. Chem. 2019;7:824. doi: 10.3389/fchem.2019.00824. PubMed DOI PMC
Wolfmeier H., Pletzer D., Mansour S.C., Hancock R.E. New perspectives in biofilm eradication. ACS Infect. Dis. 2018;4:93–106. doi: 10.1021/acsinfecdis.7b00170. PubMed DOI
Koo H., Allan R.N., Howlin R.P., Stoodley P., Hall-Stoodley L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017;15:740–755. doi: 10.1038/nrmicro.2017.99. PubMed DOI PMC
Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003;2:114–122. doi: 10.1038/nrd1008. PubMed DOI
McDougald D., Rice S.A., Barraud N., Steinberg P.D., Kjelleberg S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 2012;10:39–50. doi: 10.1038/nrmicro2695. PubMed DOI
Vaňková E., Paldrychová M., Kašparová P., Lokočová K., Kodeš Z., Maťátková O., Kolouchová I., Masák J. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J. Microbiol. Biotechnol. 2020;36:101. doi: 10.1007/s11274-020-02876-5. PubMed DOI
Maťátková O., Kolouchová I., Kvasničková E., Ježdík R., Masák J., Čejková A. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem. Pap. 2017;71:1471–1480. doi: 10.1007/s11696-017-0141-8. DOI
Mishra B., Wang G. Individual and Combined Effects of Engineered Peptides and Antibiotics on Pseudomonas aeruginosa Biofilms. Pharmaceuticals. 2017;10:58. doi: 10.3390/ph10030058. PubMed DOI PMC
Riss T., Moravec R., Niles A., Benink H., Worzella T., Minor L. Assay Guidance Manual. Eli Lilly & Company; The National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2004. Cell Viability Assays. PubMed