Polydatin Incorporated in Polycaprolactone Nanofibers Improves Osteogenic Differentiation

. 2022 Jun 08 ; 15 (6) : . [epub] 20220608

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35745646

Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs.

Zobrazit více v PubMed

Lilienthal I., Herold N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int. J. Mol. Sci. 2020;21:6885. doi: 10.3390/ijms21186885. PubMed DOI PMC

Ottaviani G., Jaffe N. The epidemiology of osteosarcoma. Cancer Treat. Res. 2009;152:3–13. PubMed

Misaghi A., Goldin A., Awad M., Kulidjian A.A. Osteosarcoma: A comprehensive review. SICOT-J. 2018;4:12. doi: 10.1051/sicotj/2017028. PubMed DOI PMC

Gibbs C.P., Kukekov V.G., Reith J.D., Tchigrinova O., Suslov O.N., Scott E.W., Ghivizzani S.C., Ignatova T.N., Steindler D.A. Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia. 2005;7:967–976. doi: 10.1593/neo.05394. PubMed DOI PMC

Taran S.J., Taran R., Malipatil N.B. Pediatric Osteosarcoma: An Updated Review. Indian J. Med. Paediatr. Oncol. 2017;38:33–43. doi: 10.4103/0971-5851.203513. PubMed DOI PMC

Cascini C., Chiodoni C. The Immune Landscape of Osteosarcoma: Implications for Prognosis and Treatment Response. Cells. 2021;10:1668. doi: 10.3390/cells10071668. PubMed DOI PMC

Basu-Roy U., Basilico C., Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett. 2013;338:158–167. doi: 10.1016/j.canlet.2012.05.028. PubMed DOI PMC

Broadhead M.L., Clark J.C.M., Myers D.E., Dass C.R., Choong P.F.M. The molecular pathogenesis of osteosarcoma: A review. Sarcoma. 2011;2011:959248. doi: 10.1155/2011/959248. PubMed DOI PMC

La Noce M., Stellavato A., Vassallo V., Cammarota M., Laino L., Desiderio V., Del Vecchio V., Nicoletti G.F., Tirino V., Papaccio G., et al. Hyaluronan-Based Gel Promotes Human Dental Pulp Stem Cells Bone Differentiation by Activating YAP/TAZ Pathway. Cells. 2021;10:2899. doi: 10.3390/cells10112899. PubMed DOI PMC

Ye G., Bao F., Zhang X., Song Z., Liao Y., Fei Y., Bunpetch V., Heng B.C., Shen W., Liu H., et al. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine. 2020;15:1995–2017. doi: 10.2217/nnm-2020-0112. PubMed DOI

Moyers-Montoya E.D., Escobedo-González R.G., Vargas-Requena C.L., Garcia-Casillas P.E., Martínez-Pérez C.A. Epithelial Growth Factor-Anchored on Polycaprolactone/6-deoxy-6-amino-β-cyclodextrin Nanofibers: In Vitro and In Vivo Evaluation. Polymers. 2021;13:1303. doi: 10.3390/polym13081303. PubMed DOI PMC

Sonomoto K., Yamaoka K., Kaneko H., Yamagata K., Sakata K., Zhang X., Kondo M., Zenke Y., Sabanai K., Nakayamada S., et al. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. PLoS ONE. 2016;11:e0153231. doi: 10.1371/journal.pone.0153231. PubMed DOI PMC

Li B., Wang X.L. Effective treatment of polydatin weakens the symptoms of collagen-induced arthritis in mice through its anti-oxidative and anti-inflammatory effects and the activation of MMP-9. Mol. Med. Rep. 2016;14:5357–5362. doi: 10.3892/mmr.2016.5903. PubMed DOI

Martano M., Stiuso P., Facchiano A., De Maria S., Vanacore D., Restucci B., Rubini C., Caraglia M., Ravagnan G., Lo Muzio L. Aryl hydrocarbon receptor, a tumor gradeassociated marker of oral cancer, is directly downregulated by polydatin: A pilot study. Oncol. Rep. 2018;40:1435–1442. PubMed

Mele L., la Noce M., Paino F., Regad T., Wagner S., Liccardo D., Papaccio G., Lombardi A., Caraglia M., Tirino V., et al. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. J. Exp. Clin. Cancer Res. 2019;38:160. doi: 10.1186/s13046-019-1164-5. PubMed DOI PMC

De Maria S., Scognamiglio I., Lombardi A., Amodio N., Caraglia M., Carteni M., Ravagnan G., Stiuso P. Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell. J. Transl. Med. 2013;11:264. doi: 10.1186/1479-5876-11-264. PubMed DOI PMC

Luce A., Lama S., Millan P.C., Itro A., Sangiovanni A., Caputo C., Ferranti P., Cappabianca S., Caraglia M., Stiuso P. Polydatin Induces Differentiation and Radiation Sensitivity in Human Osteosarcoma Cells and Parallel Secretion through Lipid Metabolite Secretion. Oxidative Med. Cell. Longev. 2021;2021:3337013. doi: 10.1155/2021/3337013. PubMed DOI PMC

Zhou Q.-L., Qin R.-Z., Yang Y.-X., Huang K.-B., Yang X.-W. Polydatin possesses notable antiosteoporotic activity via regulation of OPG, RANKL and betacatenin. Mol. Med. Rep. 2016;14:1865–1869. doi: 10.3892/mmr.2016.5432. PubMed DOI

Chen X.-J., Shen Y.-S., He M.-C., Yang F., Yang P., Pang F.-X., He W., Cao Y.-M., Wei Q.-S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/beta-catenin signaling pathway. Biomed. Pharmacother. 2019;112:108746. doi: 10.1016/j.biopha.2019.108746. PubMed DOI

Abedalwafa M., Wang F., Wang L., Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci. 2013;34:123–140.

Lindsey B.A., Markel J.E., Kleinerman E.S. Osteosarcoma Overview. Rheumatol. Ther. 2017;4:25–43. doi: 10.1007/s40744-016-0050-2. PubMed DOI PMC

Rubio R., Abarrategi A., Garcia–Castro B., Martinez–Cruzado L., Suarez C., Tornin J., Santos L., Studillo A., Colmenero I., Mulero F., et al. Bone Environment is Essential for Osteosarcoma Development from Transformed Mesenchymal Stem Cells. Stem Cells. 2014;32:1136–1148. doi: 10.1002/stem.1647. PubMed DOI

Abarrategi A., Marinas-Pardo L., Mirones I., Rincón E., García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin. Transl. Oncol. 2011;13:611–616. doi: 10.1007/s12094-011-0706-x. PubMed DOI

Tang N., Song W.X., Luo J., Haydon R.C., He T.C. Osteosarcoma development and stem cell differentiation. Clin. Orthop. Relat. Res. 2008;466:2114–2130. PubMed PMC

Wang Y.M., Wang W., Qiu E.D. Osteosarcoma cells induce differentiation of mesenchymal stem cells into cancer associated fibroblasts through Notch and Akt signaling pathway. Int. J. Clin. Exp. Pathol. 2017;10:8479–8486. PubMed PMC

Pietrovito L., Leo A., Gori V., Lulli M., Parri M., Becherucci V., Piccini L., Bambi F., Taddei M.L., Chiarugi P. Bone marrow-derived mesenchymal stem cells promote invasiveness and trans-endothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol. Oncol. 2018;12:659–676. doi: 10.1002/1878-0261.12189. PubMed DOI PMC

García-Castro J., Trigueros C., Madrenas J., Pérez-Simón J.A., Rodriguez R., Menendez P. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J. Cell. Mol. Med. 2008;12:2552–2565. doi: 10.1111/j.1582-4934.2008.00516.x. PubMed DOI PMC

Rodríguez R., García-Castro J., Trigueros C., García-Arranz M., Menéndez P. Multipotent mesenchymal stromal cells: Clinical applications and cancer modeling. Adv. Exp. Med. Biol. 2012;741:187–205. PubMed

Du Q.H., Peng C., Zhang H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol. 2013;51:1347–1354. doi: 10.3109/13880209.2013.792849. PubMed DOI

Jin Y.L., Xin L.M., Zhou C.C., Ren Y. Polydatin exerts anti-tumor effects against renal cell carcinoma cells via induction of caspase-dependent apoptosis and inhibition of the PI3K/Akt pathway. OncoTargets Ther. 2018;11:8185–8195. doi: 10.2147/OTT.S180785. PubMed DOI PMC

Jiao Y., Wu Y., Du D. Polydatin inhibits cell proliferation, invasion and migration, and induces cell apoptosis in hepatocellular carcinoma. Braz. J. Med. Biol. Res. 2018;51:e6867. doi: 10.1590/1414-431x20176867. PubMed DOI PMC

Li H., Shi B., Li Y., Yin F. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway. J. Biochem. Mol. Toxicol. 2017;31:e21900. doi: 10.1002/jbt.21900. PubMed DOI

Xu G., Kuang G., Jiang W., Jiang R., Jiang D. Polydatin promotes apoptosis through upregulation the ratio of Bax/Bcl-2 and inhibits proliferation by attenuating the β-catenin signaling in human osteosarcoma cells. Am. J. Transl. Res. 2016;8:922–931. PubMed PMC

Regev-Shoshani G., Shoseyov O., Bilkis I., Kerem Z. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 2003;374:157–163. doi: 10.1042/bj20030141. PubMed DOI PMC

Zhao W., Chen Z., Guan M. Polydatin enhances the chemosensitivity of osteosarcoma cells to paclitaxel. J. Cell. Biochem. 2019;120:17481–17490. doi: 10.1002/jcb.29012. PubMed DOI

Bai L., Ma Y., Wang X., Feng Q., Zhang Z., Wang S., Zhang H., Lu X., Xu Y., Zhao E., et al. Polydatin Inhibits Cell Viability, Migration, and Invasion Through Suppressing the c-Myc Expression in Human Cervical Cancer. Front. Cell Dev. Biol. 2021;9:587218. doi: 10.3389/fcell.2021.587218. PubMed DOI PMC

Antoine E.E., Vlachos P.P., Rylander M.N. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport. Tissue Eng. Part B Rev. 2014;20:683–696. doi: 10.1089/ten.teb.2014.0086. PubMed DOI PMC

Parisi C., Salvatore L., Veschini L., Serra M.P., Hobbs C., Madaghiele M., Sannino A., Di Silvio L. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 2020;11:1–13. doi: 10.1177/2041731419896068. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...