Recombinant BCG-LTAK63 Vaccine Candidate for Tuberculosis Induces an Inflammatory Profile in Human Macrophages
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2017/03332-5
São Paulo Research Foundation
2014/01271-0
São Paulo Research Foundation
2017/24832-6
São Paulo Research Foundation
PubMed
35746439
PubMed Central
PMC9227035
DOI
10.3390/vaccines10060831
PII: vaccines10060831
Knihovny.cz E-resources
- Keywords
- BCG vaccination, cytokine profiling, gene expression profiling, immune response, primary human macrophages, recombinant BCG, tuberculosis,
- Publication type
- Journal Article MeSH
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
Czech Centre for Phenogenomics 25250 Vestec Czech Republic
Department of Infectious Diseases Leiden University Medical Center 2333 ZA Leiden The Netherlands
Laboratório de Desenvolvimento de Vacinas Instituto Butantan São Paulo 05503 900 Brazil
See more in PubMed
World Health Organization . Global Tuberculosis Report 2021. World Health Organization; Geneva, Switzerland: 2021.
Kaufmann S.H., Hussey G., Lambert P.H. New vaccines for tuberculosis. Lancet. 2010;375:2110–2119. doi: 10.1016/S0140-6736(10)60393-5. PubMed DOI
Jamwal S.V., Mehrotra P., Singh A., Siddiqui Z., Basu A., Rao K.V. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci. Rep. 2016;6:23089. doi: 10.1038/srep23089. PubMed DOI PMC
Gengenbacher M., Kaufmann S.H. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012;36:514–532. doi: 10.1111/j.1574-6976.2012.00331.x. PubMed DOI PMC
Hoebe K., Janssen E., Beutler B. The interface between innate and adaptive immunity. Nat. Immunol. 2004;5:971–974. doi: 10.1038/ni1004-971. PubMed DOI
Glass C.K., Natoli G. Molecular control of activation and priming in macrophages. Nat. Immunol. 2016;17:26–33. doi: 10.1038/ni.3306. PubMed DOI PMC
Mege J.L., Mehraj V., Capo C. Macrophage polarization and bacterial infections. Curr. Opin. Infect. Dis. 2011;24:230–234. doi: 10.1097/QCO.0b013e328344b73e. PubMed DOI
Kelly B., O’Neill L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–784. doi: 10.1038/cr.2015.68. PubMed DOI PMC
Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000prime Rep. 2014;6:13. doi: 10.12703/P6-13. PubMed DOI PMC
Khader S.A., Divangahi M., Hanekom W., Hill P.C., Maeurer M., Makar K.W., Mayer-Barber K.D., Mhlanga M.M., Nemes E., Schlesinger L.S., et al. Targeting innate immunity for tuberculosis vaccination. J. Clin. Investig. 2019;129:3482–3491. doi: 10.1172/JCI128877. PubMed DOI PMC
Nieuwenhuizen N.E., Kaufmann S.H.E. Next-Generation Vaccines Based on Bacille Calmette-Guerin. Front. Immunol. 2018;9:121. doi: 10.3389/fimmu.2018.00121. PubMed DOI PMC
Nascimento I.P., Rodriguez D., Santos C.C., Amaral E.P., Rofatto H.K., Junqueira-Kipnis A.P., Goncalves E.D.C., D’Imperio-Lima M.R., Hirata M.H., Silva C.L., et al. Recombinant BCG Expressing LTAK63 Adjuvant induces Superior Protection against Mycobacterium tuberculosis. Sci. Rep. 2017;7:2109. doi: 10.1038/s41598-017-02003-9. PubMed DOI PMC
Rappuoli R., Pizza M., Douce G., Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today. 1999;20:493–500. doi: 10.1016/S0167-5699(99)01523-6. PubMed DOI
Tritto E., Muzzi A., Pesce I., Monaci E., Nuti S., Galli G., Wack A., Rappuoli R., Hussell T., De Gregorio E. The acquired immune response to the mucosal adjuvant LTK63 imprints the mouse lung with a protective signature. J. Immunol. 2007;179:5346–5357. doi: 10.4049/jimmunol.179.8.5346. PubMed DOI
Moraes L., Trentini M.M., Fousteris D., Eto S.F., Chudzinski-Tavassi A.M., Leite L.C.C., Kanno A.I. CRISPR/Cas9 Approach to Generate an Auxotrophic BCG Strain for Unmarked Expression of LTAK63 Adjuvant: A Tuberculosis Vaccine Candidate. Front. Immunol. 2022;13:867195. doi: 10.3389/fimmu.2022.867195. PubMed DOI PMC
Carvalho Dos Santos C., Rodriguez D., Kanno Issamu A., Cezar De Cerqueira Leite L., Pereira Nascimento I. Recombinant BCG expressing the LTAK63 adjuvant induces increased early and long-term immune responses against Mycobacteria. Hum. Vaccines Immunother. 2020;16:673–683. doi: 10.1080/21645515.2019.1669414. PubMed DOI PMC
Verreck F.A., de Boer T., Langenberg D.M., van der Zanden L., Ottenhoff T.H. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J. Leukoc. Biol. 2006;79:285–293. doi: 10.1189/jlb.0105015. PubMed DOI
Korbee C.J., Heemskerk M.T., Kocev D., van Strijen E., Rabiee O., Franken K., Wilson L., Savage N.D.L., Dzeroski S., Haks M.C., et al. Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nat. Commun. 2018;9:358. doi: 10.1038/s41467-017-02777-6. PubMed DOI PMC
Joosten S.A., Goeman J.J., Sutherland J.S., Opmeer L., de Boer K.G., Jacobsen M., Kaufmann S.H., Finos L., Magis-Escurra C., Ota M.O. Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immun. 2012;13:71–82. doi: 10.1038/gene.2011.64. PubMed DOI
Haks M.C., Goeman J.J., Magis-Escurra C., Ottenhoff T.H. Focused human gene expression profiling using dual-color reverse transcriptase multiplex ligation-dependent probe amplification. Vaccine. 2015;33:5282–5288. doi: 10.1016/j.vaccine.2015.04.054. PubMed DOI
Bastos R.G., Borsuk S., Seixas F.K., Dellagostin O.A. Recombinant Mycobacterium bovis BCG. Vaccine. 2009;27:6495–6503. doi: 10.1016/j.vaccine.2009.08.044. PubMed DOI
Sorensen H.P., Mortensen K.K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Factories. 2005;4:1. doi: 10.1186/1475-2859-4-1. PubMed DOI PMC
da Costa A.C., Costa-Junior Ade O., de Oliveira F.M., Nogueira S.V., Rosa J.D., Resende D.P., Kipnis A., Junqueira-Kipnis A.P. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS ONE. 2014;9:e112848. doi: 10.1371/journal.pone.0112848. PubMed DOI PMC
Sadler A.J., Williams B.R. Interferon-inducible antiviral effectors. Nature reviews. Immunology. 2008;8:559–568. PubMed PMC
Diamond M.S., Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 2013;13:46–57. doi: 10.1038/nri3344. PubMed DOI PMC
MacMicking J.D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 2012;12:367–382. doi: 10.1038/nri3210. PubMed DOI PMC
Boxx G.M., Cheng G. The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe. 2016;19:760–769. doi: 10.1016/j.chom.2016.05.016. PubMed DOI PMC
Kovarik P., Castiglia V., Ivin M., Ebner F. Type I Interferons in Bacterial Infections: A Balancing Act. Front. Immunol. 2016;7:652. doi: 10.3389/fimmu.2016.00652. PubMed DOI PMC
Novikov A., Cardone M., Thompson R., Shenderov K., Kirschman K.D., Mayer-Barber K.D., Myers T.G., Rabin R.L., Trinchieri G., Sher A., et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. J. Immunol. 2011;187:2540–2547. doi: 10.4049/jimmunol.1100926. PubMed DOI PMC
Li Y., Banerjee S., Wang Y., Goldstein S.A., Dong B., Gaughan C., Silverman R.H., Weiss S.R. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl. Acad. Sci. USA. 2016;113:2241–2246. doi: 10.1073/pnas.1519657113. PubMed DOI PMC
Toledo Pinto T.G., Batista-Silva L.R., Medeiros R.C.A., Lara F.A., Moraes M.O. Type I Interferons, Autophagy and Host Metabolism in Leprosy. Front. Immunol. 2018;9:806. doi: 10.3389/fimmu.2018.00806. PubMed DOI PMC
Han J.H., Suh C.H., Jung J.Y., Ahn M.H., Han M.H., Kwon J.E., Yim H., Kim H.A. Elevated circulating levels of the interferon-gamma-induced chemokines are associated with disease activity and cutaneous manifestations in adult-onset Still’s disease. Sci. Rep. 2017;7:46652. doi: 10.1038/srep46652. PubMed DOI PMC
Loetscher M., Gerber B., Loetscher P., Jones S.A., Piali L., Clark-Lewis I., Baggiolini M., Moser B. Chemokine receptor specific for IP10 and mig: Structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 1996;184:963–969. doi: 10.1084/jem.184.3.963. PubMed DOI PMC
Smit M.J., Verdijk P., van der Raaij-Helmer E.M., Navis M., Hensbergen P.J., Leurs R., Tensen C.P. CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood. 2003;102:1959–1965. doi: 10.1182/blood-2002-12-3945. PubMed DOI
Ding Q., Lu P., Xia Y., Ding S., Fan Y., Li X., Han P., Liu J., Tian D., Liu M. CXCL9: Evidence and contradictions for its role in tumor progression. Cancer Med. 2016;5:3246–3259. doi: 10.1002/cam4.934. PubMed DOI PMC
Kang D.D., Lin Y., Moreno J.R., Randall T.D., Khader S.A. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS ONE. 2011;6:e16161. doi: 10.1371/journal.pone.0016161. PubMed DOI PMC
Vignali D.A., Kuchroo V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012;13:722–728. doi: 10.1038/ni.2366. PubMed DOI PMC
Mendez-Samperio P. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. Int. J. Infect. Dis. 2010;14:e366–e371. doi: 10.1016/j.ijid.2009.06.022. PubMed DOI
Cooper A.M., Mayer-Barber K.D., Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 2011;4:252–260. doi: 10.1038/mi.2011.13. PubMed DOI PMC
Croft M. The role of TNF superfamily members in T-cell function and diseases. Nature reviews. Immunology. 2009;9:271–285. PubMed PMC
Parameswaran N., Patial S. Tumor necrosis factor-alpha signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010;20:87–103. doi: 10.1615/CritRevEukarGeneExpr.v20.i2.10. PubMed DOI PMC
Maeurer M.J., Trinder P., Hommel G., Walter W., Freitag K., Atkins D., Storkel S. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect. Immun. 2000;68:2962–2970. doi: 10.1128/IAI.68.5.2962-2970.2000. PubMed DOI PMC
Ruckert R., Brandt K., Ernst M., Marienfeld K., Csernok E., Metzler C., Budagian V., Bulanova E., Paus R., Bulfone-Paus S. Interleukin-15 stimulates macrophages to activate CD4+ T cells: A role in the pathogenesis of rheumatoid arthritis? Immunology. 2009;126:63–73. doi: 10.1111/j.1365-2567.2008.02878.x. PubMed DOI PMC
Mueller Y.M., Petrovas C., Bojczuk P.M., Dimitriou I.D., Beer B., Silvera P., Villinger F., Cairns J.S., Gracely E.J., Lewis M.G., et al. Interleukin-15 increases effector memory CD8+ t cells and NK Cells in simian immunodeficiency virus-infected macaques. J. Virol. 2005;79:4877–4885. doi: 10.1128/JVI.79.8.4877-4885.2005. PubMed DOI PMC
Stonier S.W., Ma L.J., Castillo E.F., Schluns K.S. Dendritic cells drive memory CD8 T-cell homeostasis via IL-15 transpresentation. Blood. 2008;112:4546–4554. doi: 10.1182/blood-2008-05-156307. PubMed DOI PMC
Davidson S., Crotta S., McCabe T.M., Wack A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat. Commun. 2014;5:3864. doi: 10.1038/ncomms4864. PubMed DOI PMC
Eggensperger S., Tampe R. The transporter associated with antigen processing: A key player in adaptive immunity. Biol. Chem. 2015;396:1059–1072. doi: 10.1515/hsz-2014-0320. PubMed DOI
Lankat-Buttgereit B., Tampe R. The transporter associated with antigen processing: Function and implications in human diseases. Physiol. Rev. 2002;82:187–204. doi: 10.1152/physrev.00025.2001. PubMed DOI
Kim B.H., Shenoy A.R., Kumar P., Das R., Tiwari S., MacMicking J.D. A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science. 2011;332:717–721. doi: 10.1126/science.1201711. PubMed DOI
Li P., Jiang W., Yu Q., Liu W., Zhou P., Li J., Xu J., Xu B., Wang F., Shao F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551:378–383. doi: 10.1038/nature24467. PubMed DOI
Leavy O. Innate immunity: GBPs coordinate vesicular trafficking for host defence. Nature reviews. Immunology. 2011;11:372–373. PubMed
Qiu X., Guo H., Yang J., Ji Y., Wu C.S., Chen X. Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci. Rep. 2018;8:1679. doi: 10.1038/s41598-018-19828-7. PubMed DOI PMC
Chen Y., Yan H., Song Z., Chen F., Wang H., Niu J., Shi X., Zhang D., Zhang N., Zhai Z., et al. Downregulation of TNIP1 Expression Leads to Increased Proliferation of Human Keratinocytes and Severer Psoriasis-Like Conditions in an Imiquimod-Induced Mouse Model of Dermatitis. PLoS ONE. 2015;10:e0127957. PubMed PMC
Gurevich I., Zhang C., Francis N., Aneskievich B.J. TNIP1, a retinoic acid receptor corepressor and A20-binding inhibitor of NF-kappaB, distributes to both nuclear and cytoplasmic locations. J. Histochem. Cytochem. 2011;59:1101–1112. doi: 10.1369/0022155411427728. PubMed DOI PMC
Martinez A.N., Mehra S., Kaushal D. Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J. Infect. Dis. 2013;207:1253–1261. doi: 10.1093/infdis/jit037. PubMed DOI PMC
Comte D., Karampetsou M.P., Yoshida N., Kis-Toth K., Kyttaris V.C., Tsokos G.C. Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017;69:1035–1044. doi: 10.1002/art.40038. PubMed DOI PMC
Malaer J.D., Mathew P.A. CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res. 2017;7:1637–1641. PubMed PMC
Jia T., Serbina N.V., Brandl K., Zhong M.X., Leiner I.M., Charo I.F., Pamer E.G. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J. Immunol. 2008;180:6846–6853. doi: 10.4049/jimmunol.180.10.6846. PubMed DOI PMC
Lu N., Wang L., Cao H., Liu L., Van Kaer L., Washington M.K., Rosen M.J., Dube P.E., Wilson K.T., Ren X., et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J. Immunol. 2014;192:1013–1023. doi: 10.4049/jimmunol.1300133. PubMed DOI PMC
Blischak J.D., Tailleux L., Mitrano A., Barreiro L.B., Gilad Y. Mycobacterial infection induces a specific human innate immune response. Sci. Rep. 2015;5:16882. doi: 10.1038/srep16882. PubMed DOI PMC