Synthesis, Antimalarial, Antileishmanial, and Cytotoxicity Activities and Preliminary In Silico ADMET Studies of 2-(7-Chloroquinolin-4-ylamino)ethyl Benzoate Derivatives

. 2023 Dec 09 ; 16 (12) : . [epub] 20231209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38139835

Grantová podpora
028/2022, 055/2023 The project was partially funded by Ministero del Poder Popular para Ciencias y Tecnología
2022-MED-001 Escuela de Medicina, Universidad de Especialidades Espíritu Santo (UEES)

A series of heterocyclic chloroquine hybrids, containing a chain of two carbon atoms at position four of the quinolinic chain and acting as a link between quinoline and several benzoyl groups, is synthesized and screened in vitro as an inhibitor of β-hematin formation and in vivo for its antimalarial activity against chloroquine-sensitive strains of Plasmodium berghei ANKA in this study. The compounds significantly reduced haeme crystallization, with IC50 values < 10 µM. The values were comparable to chloroquine's, with an IC50 of 1.50 ± 0.01 µM. The compounds 4c and 4e prolonged the average survival time of the infected mice to 16.7 ± 2.16 and 14.4 ± 1.20 days, respectively. We also studied the effect of the compounds 4b, 4c, and 4e on another important human parasite, Leishmania mexicana, which is responsible for cutaneous leishmaniasis, demonstrating a potential leishmanicidal effect against promasigotes, with an IC50 < 10 µM. Concerning the possible mechanism of action of these compounds on Lesihmania mexicana, we performed experiments demonstrating that these three compounds could induce the collapse of the parasite mitochondrial electrochemical membrane potential (Δφ). The in vitro cytotoxicity assays against mammalian cancerous and noncancerous human cell lines showed that the studied compounds exhibit low cytotoxic effects. The ADME/Tox analysis predicted moderate lipophilicity values, low unbound fraction values, and a poor distribution for these compounds. Therefore, moderate bioavailability was expected. We calculated other molecular descriptors, such as the topological polar surface area, according to Veber's rules, and except for 2 and 4i, the rest of the compounds violated this descriptor, demonstrating the low antimalarial activity of our compounds in vivo.

Zobrazit více v PubMed

Plewes K., Leopold S., Kingston H., Dondorp A. Malaria: What’s new in the management of malaria? Infect. Dis. Clin. N. Am. 2019;33:39–60. doi: 10.1016/j.idc.2018.10.002. PubMed DOI

World Malaria Report, 6 April 2022. [(accessed on 20 June 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria.

Short E.E., Caminade C., Bolaji N.T. Climate change contribution to the emergence or re-emergence of parasitic diseases. Infect. Dis. Res. Treat. 2017;10:1178633617732296. doi: 10.1177/1178633617732296. PubMed DOI PMC

World Health Organization WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. 2021. [(accessed on 20 June 2023)]. Available online: https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk.

Mosha J.F., Kulkarni M.A., Lukole E., Matowo N.S., Pitt C., Messenger L.A., Mallya E., Jumanne M., Aziz T., Kaaya R., et al. Effectiveness and cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs in Tanzania: A four-arm, cluster-randomised trial. Lancet. 2022;399:1227–1241. doi: 10.1016/S0140-6736(21)02499-5. PubMed DOI PMC

Ridley R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 2002;415:686–693. doi: 10.1038/415686a. PubMed DOI

Ashley E.A., Dhorda M., Fairhurst R.M., Amaratunga C., Lim P., Suon S., Sreng S., Anderson J.M., Mao S., Sam B., et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981. PubMed DOI PMC

Benaim G., Garcia C.R. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis. Trop. Biomed. 2011;28:471–481. PubMed

Leishmaniasis OPS/OMS. January 2022. [(accessed on 25 February 2023)]. Available online: https://www.paho.org/es/temas/leishmaniasis.

Mann S., Frasca K., Scherrer S., Henao-Martínez A., Newman S., Ramanan P., Suarez J.A. A review of Leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep. 2021;8:121–132. doi: 10.1007/s40475-021-00232-7. PubMed DOI PMC

Rashidi S., Fernández-Rubio C., Manzano-Román R., Mansouri R., Shafiei R., Ali-Hassanzadeh M., Barazesh A., Karimazar M., Hatam G., Nguewa P. Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology. 2021;148:655–671. doi: 10.1017/S0031182021000160. PubMed DOI PMC

Croft S.L., Coombs G.H. Leishmaniasis: Current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;11:502–508. doi: 10.1016/j.pt.2003.09.008. PubMed DOI

Serrano-Martín X., García-Marchan Y., Fernandez A., Rodríguez N., Rojas H.Ñ., Visbal G., Benaim G. Amiodarone destabilizes the intracellular Ca2+ homeostasis and the biosynthesis of sterols in Leishmania mexicana. Antimicrob. Agents Chemother. 2009;53:1403–1410. doi: 10.1128/AAC.01215-08. PubMed DOI PMC

Agrawal V., Singh Z. Miltefosine: First oral drug for treatment of visceral leishmaniasis. Med. J. Armed Forces India. 2006;62:66–67. doi: 10.1016/S0377-1237(06)80162-0. PubMed DOI PMC

García-García V., Oldfield E., Benaim G. Inhibition of Leishmania mexicana growth by the tuberculosis drug SQ109. Antimicrob. Agents Chemother. 2016;60:6386–6389. doi: 10.1128/AAC.00945-16. PubMed DOI PMC

Benaim G., Paniz-Mondolfi A.E., Sordillo E.M. Rationale for use of amiodarone and its derivatives for treatment of Chagas’ disease and leishmaniasis. Curr. Pharm. Des. 2021;27:1825–1833. doi: 10.2174/1381612826666200928161403. PubMed DOI

Kumar S., Bawa S., Gupta H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009;9:1648–1654. doi: 10.2174/138955709791012247. PubMed DOI

Afzal O., Kumar S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI

Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC

Dorn A., Stoffel H., Matile H., Bubendorf A., Ridley R. Malarial haemozoin/β-haematin supports haem polymerisation in the absence of protein. Nature. 1995;374:269–271. doi: 10.1038/374269a0. PubMed DOI

De Villiers K., Gildenhuys J., Roex T. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine. ACS Chem. Biol. 2012;7:666–671. doi: 10.1021/cb200528z. PubMed DOI

Nordstrøm L., Sironi J., Aranda E., Maisonet J., Perez-Soler R., Wu P., Schwartz E. Discovery of autophagy inhibitors with antiproliferative activity in lung and pancreatic cancer cells. ACS Med. Chem. Lett. 2015;6:134–139. doi: 10.1021/ml500348p. PubMed DOI PMC

Bhat P., Kriel J., Priya B., Basappa, Shivananju N., Loos B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol. 2018;147:170–182. doi: 10.1016/j.bcp.2017.11.021. PubMed DOI

Kapishnikov S., Hempelmann E., Elbaum M., Als-Nielsen J., Leiserowitz L. Malaria pigment crystals: The achilles’ heel of the malaria parasite. ChemMedChem. 2021;16:1515–1532. doi: 10.1002/cmdc.202000895. PubMed DOI PMC

Dechy-Cabaret O., Benoit-Vical F., Robert A., Meunier B. Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. ChemBioChem. 2000;1:281–283. doi: 10.1002/1439-7633(20001117)1:4<281::AID-CBIC281>3.0.CO;2-W. PubMed DOI

Gemma S., Camodeca C., Coccone S., Joshi B., Bernetti M., Moretti V., Brogi S., de Marcos S.M., Savini L., Taramelli D., et al. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: Further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J. Med. Chem. 2012;55:6948–6967. doi: 10.1021/jm300802s. PubMed DOI

Saini A., Kumar S., Raj R., Chowdhary S., Gendrot M., Mosnier J., Fonta I., Pradines B., Kumar V. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorg. Chem. 2021;109:104733. doi: 10.1016/j.bioorg.2021.104733. PubMed DOI

Rani A., Sharma A., Legac J., Rosenthal P., Singh P., Kumar V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerisation inhibition studies. Bioorg. Med. Chem. 2021;39:116159. doi: 10.1016/j.bmc.2021.116159. PubMed DOI

Rojas Ruiz F., García-Sánchez R., Villabona Estupiñan S., Gómez-Barrio A., Torres Amado D., Pérez-Solórzano B., Nogal-Ruiz J., Martínez-Fernández A., Kouznetsov V. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg. Med. Chem. 2011;19:4562–4573. doi: 10.1016/j.bmc.2011.06.025. PubMed DOI

Tukulula M., Sharma R., Meurillon M., Mahajan A., Naran K., Warner D., Huang J., Mekonnen B., Chibale K. Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med. Chem. Lett. 2012;4:128–131. doi: 10.1021/ml300362a. PubMed DOI PMC

Pepe D., Toumpa D., André-Barrès C., Menendez C., Mouray E., Baltas M., Grellier P., Papaioannou D., Athanassopoulos C. Synthesis of novel g factor or chloroquine-artemisinin hybrids and conjugates with potent antiplasmodial activity. ACS Med. Chem. Lett. 2020;11:921–927. doi: 10.1021/acsmedchemlett.9b00669. PubMed DOI PMC

Maurya S.S., Khan S.I., Bahuguna A., Kumar D., Rawat D.S. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem. 2017;129:175–185. doi: 10.1016/j.ejmech.2017.02.024. PubMed DOI

Marinho J.A., Martins Guimaraes D.S., Glanzmann N., de Almeida-Pimentel G., da Costa-Nunes K.I., Gualberto-Pereira H.M., Navarro M., de Pilla-Varotti F., da Silva D.A., Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridisation. Eur. J. Med. Chem. 2021;215:113271. doi: 10.1016/j.ejmech.2021.113271. PubMed DOI

Morphy R., Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005;48:6523–6543. doi: 10.1021/jm058225d. PubMed DOI

Muregi F.W., Ishih A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res. 2010;71:20–32. doi: 10.1002/ddr.20345. PubMed DOI PMC

Meunier B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008;41:69–77. doi: 10.1021/ar7000843. PubMed DOI

Pawełczyk A., Sowa-Kasprzak K., Olender D., Zaprutko L. Molecular consortia—Various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci. 2018;19:1104–1123. doi: 10.3390/ijms19041104. PubMed DOI PMC

Sampath H.M., Herrmann L., Tsogoeva S.B. Structural hybridisation as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020;30:127514. PubMed

Soltan O.M., Shoman M.E., Abdel-Aziz S.A., Narumi A., Konno H., Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021;225:113768. doi: 10.1016/j.ejmech.2021.113768. PubMed DOI

Ferrer R., Lobo G., Gamboa N., Rodrigues J., Abramjuk C., Jung K., Lein M., Charris J.E. Synthesis of [(7-chloroquinolin-4-yl) amino] chalcones: Potential antimalarial and anticancer agents. Sci. Pharm. 2009;77:725–742.

Romero A.H., Acosta M., Gamboa N., Charris J.E., Salazar J., López S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg. Med. Chem. 2015;23:4755–4762. doi: 10.1016/j.bmc.2015.05.040. PubMed DOI

Romero J.A., Acosta M.E., Gamboa N., Mijares M.R., De Sanctis J.B., Charris J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018;26:815–823. doi: 10.1016/j.bmc.2017.12.022. PubMed DOI

Charris J.E., Monasterios M.C., Acosta M.E., Rodríguez M.A., Gamboa N.D., Martínez G.P., Rojas H.R., Mijares M.R., De Sanctis J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res. 2019;28:2050–2066. doi: 10.1007/s00044-019-02435-0. DOI

Ramírez H., Fernandez-Moreira E., Rodrigues J.R., Mijares M.R., Ángel J.E., Charris J.E. Synthesis and in silico ADME/Tox profiling studies of heterocyclic hybrids based on chloroquine scaffolds. Potential antimalarial activity. Parasitol. Res. 2022;121:441–451. doi: 10.1007/s00436-021-07374-7. PubMed DOI

Kenyon R.L., Wiesner J.A., Kwartler C.E. Chloroquine manufacture. Ind. Eng. Chem. 1949;41:654–662. doi: 10.1021/ie50472a002. DOI

Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Engl. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI

Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Delaney J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004;44:1000–1005. doi: 10.1021/ci034243x. PubMed DOI

Ali J., Camilleri P., Brown M.B., Hutt A.J., Kirton S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012;52:420–428. doi: 10.1021/ci200387c. PubMed DOI

Pires D.E.V., Blundell T.L., Ascher D.V. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015;58:4066–4072. doi: 10.1021/acs.jmedchem.5b00104. PubMed DOI PMC

Daina A., Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC

Watanabe R., Esaki T., Kawashima H., Natsume-Kitatani Y., Nagao C., Ohashi R., Mizuguchi K. Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Mol. Pharm. 2018;15:5302–5311. doi: 10.1021/acs.molpharmaceut.8b00785. PubMed DOI

Daina A., Michielin O., Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47:W357–W364. doi: 10.1093/nar/gkz382. PubMed DOI PMC

Manikandan P., Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets. 2018;19:38–54. doi: 10.2174/1389450118666170125144557. PubMed DOI

Wang Z., Yang H., Wu Z., Wang T., Li W., Tang Y., Liu G. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem. 2018;13:2189–2201. doi: 10.1002/cmdc.201800533. PubMed DOI

Daly A.K., Rettie A.E., Fowler D.M., Miners J.O. Pharmacogenomics of CYP2C9: Functional and clinical considerations. J. Pers. Med. 2017;8:1. doi: 10.3390/jpm8010001. PubMed DOI PMC

Del Tredici A.L., Malhotra A., Dedek M., Espin F., Roach D., Zhu G.D., Voland J., Moreno T.A. Frequency of CYP2D6 alleles including structural variants in the United States. Front. Pharmacol. 2018;9:305. doi: 10.3389/fphar.2018.00305. PubMed DOI PMC

Baelmans R., Deharo E., Muñoz V., Sauvain M., Ginsburg H. Experimental conditions for testing the inhibitory activity of chloroquine on the formation of β-Hematin. Exp. Parasitol. 2000;96:243–248. doi: 10.1006/expr.2000.4558. PubMed DOI

Mijoba A., Fernandez-Moreira E., Parra-Giménez N., Espinosa-Tapia S., Blanco B., Ramírez H., Charris J.E. Synthesis of benzocycloalkanone-based Michael acceptors and biological activities as antimalarial and antitrypanosomal agents. Molecules. 2023;28:5569. doi: 10.3390/molecules28145569. PubMed DOI PMC

Peters W., Robinson B. Parasitic infection models. In: Zak O., Sande M., editors. Handbook of Antimalarial Models of Infection. Academic Press; London, UK: 1999. p. 757.

Mehta R., López-Berestein G., Hopfer R., Mills K., Juliano R.L. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim. Biophys. Acta. 1984;770:230–234. doi: 10.1016/0005-2736(84)90135-4. PubMed DOI

Benaim G., Bermúdez R., Urbina J. Ca2+ transport in isolated mitochondrial vesicles from Leishmania braziliensis pro-mastigotes. Mol. Biochem. Parasitol. 1990;39:61–68. doi: 10.1016/0166-6851(90)90008-A. PubMed DOI

Benaim G., Paniz-Mondolfi A.E., Sordillo E.M., Martinez-Sotillo N. Disruption of intracellular calcium homeostasis as a therapeutic target against Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2020;10:46. doi: 10.3389/fcimb.2020.00046. PubMed DOI PMC

Benaim G., Casanova P., Hernandez-Rodriguez V., Mujica-Gonzalez S., Parra-Gimenez N., Plaza-Rojas L., Concepcion J.L., Liu Y.L., Oldfield E., Paniz-Mondolfi A.E., et al. Dronedarone, an amiodarone analog with an improved anti-Leishmania mexicana efficacy. Antimicrob. Agents Chemother. 2014;58:2295–2303. doi: 10.1128/AAC.01240-13. PubMed DOI PMC

GraphPad Prism version 5.3 (GraphPad Prism Software Inc., La Jolla, CA, USA, 1992–2004) [(accessed on 1 February 2023)]. Available online: https://www.graphpad.com/features.

Elderfield R.C., Gensler W.J., Birstein O., Kreysa F.J., Maynard J.T., Galbreath J. Synthesis of certain simple 4-aminoquinoline derivatives. J. Am. Chem. Soc. 1946;68:1250–1251. doi: 10.1021/ja01211a032. PubMed DOI

Chiyanzu I., Clarkson C., Smith P.J., Lehman J., Gut J., Rosenthal P.J., Chibale K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem. 2005;13:3249–3261. doi: 10.1016/j.bmc.2005.02.037. PubMed DOI

Džubák P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář T.M., Hajdúch M., Poláková M.M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI

Perlíková P., Rylová G., Naus P., Elbert T., Tloustóvá E., Bourderioux A., Postová Slavetínská L., Motyka K., Dolezal D., Znojek P., et al. 7-(2-Thienyl)-7-deazaadenosine (AB61), a new potent nucleoside cytostatic with a complex mode of action. Mol. Cancer Ther. 2016;15:922–937. doi: 10.1158/1535-7163.MCT-14-0933. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace