Synthesis, Antimalarial, Antileishmanial, and Cytotoxicity Activities and Preliminary In Silico ADMET Studies of 2-(7-Chloroquinolin-4-ylamino)ethyl Benzoate Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
028/2022, 055/2023
The project was partially funded by Ministero del Poder Popular para Ciencias y Tecnología
2022-MED-001
Escuela de Medicina, Universidad de Especialidades Espíritu Santo (UEES)
PubMed
38139835
PubMed Central
PMC10747975
DOI
10.3390/ph16121709
PII: ph16121709
Knihovny.cz E-zdroje
- Klíčová slova
- ADMET, aminoalkylbenzoates, chloroquine, cytotoxicity, leishmaniasis, malaria,
- Publikační typ
- časopisecké články MeSH
A series of heterocyclic chloroquine hybrids, containing a chain of two carbon atoms at position four of the quinolinic chain and acting as a link between quinoline and several benzoyl groups, is synthesized and screened in vitro as an inhibitor of β-hematin formation and in vivo for its antimalarial activity against chloroquine-sensitive strains of Plasmodium berghei ANKA in this study. The compounds significantly reduced haeme crystallization, with IC50 values < 10 µM. The values were comparable to chloroquine's, with an IC50 of 1.50 ± 0.01 µM. The compounds 4c and 4e prolonged the average survival time of the infected mice to 16.7 ± 2.16 and 14.4 ± 1.20 days, respectively. We also studied the effect of the compounds 4b, 4c, and 4e on another important human parasite, Leishmania mexicana, which is responsible for cutaneous leishmaniasis, demonstrating a potential leishmanicidal effect against promasigotes, with an IC50 < 10 µM. Concerning the possible mechanism of action of these compounds on Lesihmania mexicana, we performed experiments demonstrating that these three compounds could induce the collapse of the parasite mitochondrial electrochemical membrane potential (Δφ). The in vitro cytotoxicity assays against mammalian cancerous and noncancerous human cell lines showed that the studied compounds exhibit low cytotoxic effects. The ADME/Tox analysis predicted moderate lipophilicity values, low unbound fraction values, and a poor distribution for these compounds. Therefore, moderate bioavailability was expected. We calculated other molecular descriptors, such as the topological polar surface area, according to Veber's rules, and except for 2 and 4i, the rest of the compounds violated this descriptor, demonstrating the low antimalarial activity of our compounds in vivo.
Zobrazit více v PubMed
Plewes K., Leopold S., Kingston H., Dondorp A. Malaria: What’s new in the management of malaria? Infect. Dis. Clin. N. Am. 2019;33:39–60. doi: 10.1016/j.idc.2018.10.002. PubMed DOI
World Malaria Report, 6 April 2022. [(accessed on 20 June 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria.
Short E.E., Caminade C., Bolaji N.T. Climate change contribution to the emergence or re-emergence of parasitic diseases. Infect. Dis. Res. Treat. 2017;10:1178633617732296. doi: 10.1177/1178633617732296. PubMed DOI PMC
World Health Organization WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. 2021. [(accessed on 20 June 2023)]. Available online: https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk.
Mosha J.F., Kulkarni M.A., Lukole E., Matowo N.S., Pitt C., Messenger L.A., Mallya E., Jumanne M., Aziz T., Kaaya R., et al. Effectiveness and cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs in Tanzania: A four-arm, cluster-randomised trial. Lancet. 2022;399:1227–1241. doi: 10.1016/S0140-6736(21)02499-5. PubMed DOI PMC
Ridley R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 2002;415:686–693. doi: 10.1038/415686a. PubMed DOI
Ashley E.A., Dhorda M., Fairhurst R.M., Amaratunga C., Lim P., Suon S., Sreng S., Anderson J.M., Mao S., Sam B., et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981. PubMed DOI PMC
Benaim G., Garcia C.R. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis. Trop. Biomed. 2011;28:471–481. PubMed
Leishmaniasis OPS/OMS. January 2022. [(accessed on 25 February 2023)]. Available online: https://www.paho.org/es/temas/leishmaniasis.
Mann S., Frasca K., Scherrer S., Henao-Martínez A., Newman S., Ramanan P., Suarez J.A. A review of Leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep. 2021;8:121–132. doi: 10.1007/s40475-021-00232-7. PubMed DOI PMC
Rashidi S., Fernández-Rubio C., Manzano-Román R., Mansouri R., Shafiei R., Ali-Hassanzadeh M., Barazesh A., Karimazar M., Hatam G., Nguewa P. Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology. 2021;148:655–671. doi: 10.1017/S0031182021000160. PubMed DOI PMC
Croft S.L., Coombs G.H. Leishmaniasis: Current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;11:502–508. doi: 10.1016/j.pt.2003.09.008. PubMed DOI
Serrano-Martín X., García-Marchan Y., Fernandez A., Rodríguez N., Rojas H.Ñ., Visbal G., Benaim G. Amiodarone destabilizes the intracellular Ca2+ homeostasis and the biosynthesis of sterols in Leishmania mexicana. Antimicrob. Agents Chemother. 2009;53:1403–1410. doi: 10.1128/AAC.01215-08. PubMed DOI PMC
Agrawal V., Singh Z. Miltefosine: First oral drug for treatment of visceral leishmaniasis. Med. J. Armed Forces India. 2006;62:66–67. doi: 10.1016/S0377-1237(06)80162-0. PubMed DOI PMC
García-García V., Oldfield E., Benaim G. Inhibition of Leishmania mexicana growth by the tuberculosis drug SQ109. Antimicrob. Agents Chemother. 2016;60:6386–6389. doi: 10.1128/AAC.00945-16. PubMed DOI PMC
Benaim G., Paniz-Mondolfi A.E., Sordillo E.M. Rationale for use of amiodarone and its derivatives for treatment of Chagas’ disease and leishmaniasis. Curr. Pharm. Des. 2021;27:1825–1833. doi: 10.2174/1381612826666200928161403. PubMed DOI
Kumar S., Bawa S., Gupta H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009;9:1648–1654. doi: 10.2174/138955709791012247. PubMed DOI
Afzal O., Kumar S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI
Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC
Dorn A., Stoffel H., Matile H., Bubendorf A., Ridley R. Malarial haemozoin/β-haematin supports haem polymerisation in the absence of protein. Nature. 1995;374:269–271. doi: 10.1038/374269a0. PubMed DOI
De Villiers K., Gildenhuys J., Roex T. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine. ACS Chem. Biol. 2012;7:666–671. doi: 10.1021/cb200528z. PubMed DOI
Nordstrøm L., Sironi J., Aranda E., Maisonet J., Perez-Soler R., Wu P., Schwartz E. Discovery of autophagy inhibitors with antiproliferative activity in lung and pancreatic cancer cells. ACS Med. Chem. Lett. 2015;6:134–139. doi: 10.1021/ml500348p. PubMed DOI PMC
Bhat P., Kriel J., Priya B., Basappa, Shivananju N., Loos B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol. 2018;147:170–182. doi: 10.1016/j.bcp.2017.11.021. PubMed DOI
Kapishnikov S., Hempelmann E., Elbaum M., Als-Nielsen J., Leiserowitz L. Malaria pigment crystals: The achilles’ heel of the malaria parasite. ChemMedChem. 2021;16:1515–1532. doi: 10.1002/cmdc.202000895. PubMed DOI PMC
Dechy-Cabaret O., Benoit-Vical F., Robert A., Meunier B. Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. ChemBioChem. 2000;1:281–283. doi: 10.1002/1439-7633(20001117)1:4<281::AID-CBIC281>3.0.CO;2-W. PubMed DOI
Gemma S., Camodeca C., Coccone S., Joshi B., Bernetti M., Moretti V., Brogi S., de Marcos S.M., Savini L., Taramelli D., et al. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: Further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J. Med. Chem. 2012;55:6948–6967. doi: 10.1021/jm300802s. PubMed DOI
Saini A., Kumar S., Raj R., Chowdhary S., Gendrot M., Mosnier J., Fonta I., Pradines B., Kumar V. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorg. Chem. 2021;109:104733. doi: 10.1016/j.bioorg.2021.104733. PubMed DOI
Rani A., Sharma A., Legac J., Rosenthal P., Singh P., Kumar V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerisation inhibition studies. Bioorg. Med. Chem. 2021;39:116159. doi: 10.1016/j.bmc.2021.116159. PubMed DOI
Rojas Ruiz F., García-Sánchez R., Villabona Estupiñan S., Gómez-Barrio A., Torres Amado D., Pérez-Solórzano B., Nogal-Ruiz J., Martínez-Fernández A., Kouznetsov V. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg. Med. Chem. 2011;19:4562–4573. doi: 10.1016/j.bmc.2011.06.025. PubMed DOI
Tukulula M., Sharma R., Meurillon M., Mahajan A., Naran K., Warner D., Huang J., Mekonnen B., Chibale K. Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med. Chem. Lett. 2012;4:128–131. doi: 10.1021/ml300362a. PubMed DOI PMC
Pepe D., Toumpa D., André-Barrès C., Menendez C., Mouray E., Baltas M., Grellier P., Papaioannou D., Athanassopoulos C. Synthesis of novel g factor or chloroquine-artemisinin hybrids and conjugates with potent antiplasmodial activity. ACS Med. Chem. Lett. 2020;11:921–927. doi: 10.1021/acsmedchemlett.9b00669. PubMed DOI PMC
Maurya S.S., Khan S.I., Bahuguna A., Kumar D., Rawat D.S. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem. 2017;129:175–185. doi: 10.1016/j.ejmech.2017.02.024. PubMed DOI
Marinho J.A., Martins Guimaraes D.S., Glanzmann N., de Almeida-Pimentel G., da Costa-Nunes K.I., Gualberto-Pereira H.M., Navarro M., de Pilla-Varotti F., da Silva D.A., Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridisation. Eur. J. Med. Chem. 2021;215:113271. doi: 10.1016/j.ejmech.2021.113271. PubMed DOI
Morphy R., Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005;48:6523–6543. doi: 10.1021/jm058225d. PubMed DOI
Muregi F.W., Ishih A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res. 2010;71:20–32. doi: 10.1002/ddr.20345. PubMed DOI PMC
Meunier B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008;41:69–77. doi: 10.1021/ar7000843. PubMed DOI
Pawełczyk A., Sowa-Kasprzak K., Olender D., Zaprutko L. Molecular consortia—Various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci. 2018;19:1104–1123. doi: 10.3390/ijms19041104. PubMed DOI PMC
Sampath H.M., Herrmann L., Tsogoeva S.B. Structural hybridisation as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020;30:127514. PubMed
Soltan O.M., Shoman M.E., Abdel-Aziz S.A., Narumi A., Konno H., Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021;225:113768. doi: 10.1016/j.ejmech.2021.113768. PubMed DOI
Ferrer R., Lobo G., Gamboa N., Rodrigues J., Abramjuk C., Jung K., Lein M., Charris J.E. Synthesis of [(7-chloroquinolin-4-yl) amino] chalcones: Potential antimalarial and anticancer agents. Sci. Pharm. 2009;77:725–742.
Romero A.H., Acosta M., Gamboa N., Charris J.E., Salazar J., López S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg. Med. Chem. 2015;23:4755–4762. doi: 10.1016/j.bmc.2015.05.040. PubMed DOI
Romero J.A., Acosta M.E., Gamboa N., Mijares M.R., De Sanctis J.B., Charris J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018;26:815–823. doi: 10.1016/j.bmc.2017.12.022. PubMed DOI
Charris J.E., Monasterios M.C., Acosta M.E., Rodríguez M.A., Gamboa N.D., Martínez G.P., Rojas H.R., Mijares M.R., De Sanctis J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res. 2019;28:2050–2066. doi: 10.1007/s00044-019-02435-0. DOI
Ramírez H., Fernandez-Moreira E., Rodrigues J.R., Mijares M.R., Ángel J.E., Charris J.E. Synthesis and in silico ADME/Tox profiling studies of heterocyclic hybrids based on chloroquine scaffolds. Potential antimalarial activity. Parasitol. Res. 2022;121:441–451. doi: 10.1007/s00436-021-07374-7. PubMed DOI
Kenyon R.L., Wiesner J.A., Kwartler C.E. Chloroquine manufacture. Ind. Eng. Chem. 1949;41:654–662. doi: 10.1021/ie50472a002. DOI
Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Engl. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Delaney J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004;44:1000–1005. doi: 10.1021/ci034243x. PubMed DOI
Ali J., Camilleri P., Brown M.B., Hutt A.J., Kirton S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012;52:420–428. doi: 10.1021/ci200387c. PubMed DOI
Pires D.E.V., Blundell T.L., Ascher D.V. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015;58:4066–4072. doi: 10.1021/acs.jmedchem.5b00104. PubMed DOI PMC
Daina A., Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC
Watanabe R., Esaki T., Kawashima H., Natsume-Kitatani Y., Nagao C., Ohashi R., Mizuguchi K. Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Mol. Pharm. 2018;15:5302–5311. doi: 10.1021/acs.molpharmaceut.8b00785. PubMed DOI
Daina A., Michielin O., Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47:W357–W364. doi: 10.1093/nar/gkz382. PubMed DOI PMC
Manikandan P., Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets. 2018;19:38–54. doi: 10.2174/1389450118666170125144557. PubMed DOI
Wang Z., Yang H., Wu Z., Wang T., Li W., Tang Y., Liu G. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem. 2018;13:2189–2201. doi: 10.1002/cmdc.201800533. PubMed DOI
Daly A.K., Rettie A.E., Fowler D.M., Miners J.O. Pharmacogenomics of CYP2C9: Functional and clinical considerations. J. Pers. Med. 2017;8:1. doi: 10.3390/jpm8010001. PubMed DOI PMC
Del Tredici A.L., Malhotra A., Dedek M., Espin F., Roach D., Zhu G.D., Voland J., Moreno T.A. Frequency of CYP2D6 alleles including structural variants in the United States. Front. Pharmacol. 2018;9:305. doi: 10.3389/fphar.2018.00305. PubMed DOI PMC
Baelmans R., Deharo E., Muñoz V., Sauvain M., Ginsburg H. Experimental conditions for testing the inhibitory activity of chloroquine on the formation of β-Hematin. Exp. Parasitol. 2000;96:243–248. doi: 10.1006/expr.2000.4558. PubMed DOI
Mijoba A., Fernandez-Moreira E., Parra-Giménez N., Espinosa-Tapia S., Blanco B., Ramírez H., Charris J.E. Synthesis of benzocycloalkanone-based Michael acceptors and biological activities as antimalarial and antitrypanosomal agents. Molecules. 2023;28:5569. doi: 10.3390/molecules28145569. PubMed DOI PMC
Peters W., Robinson B. Parasitic infection models. In: Zak O., Sande M., editors. Handbook of Antimalarial Models of Infection. Academic Press; London, UK: 1999. p. 757.
Mehta R., López-Berestein G., Hopfer R., Mills K., Juliano R.L. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim. Biophys. Acta. 1984;770:230–234. doi: 10.1016/0005-2736(84)90135-4. PubMed DOI
Benaim G., Bermúdez R., Urbina J. Ca2+ transport in isolated mitochondrial vesicles from Leishmania braziliensis pro-mastigotes. Mol. Biochem. Parasitol. 1990;39:61–68. doi: 10.1016/0166-6851(90)90008-A. PubMed DOI
Benaim G., Paniz-Mondolfi A.E., Sordillo E.M., Martinez-Sotillo N. Disruption of intracellular calcium homeostasis as a therapeutic target against Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2020;10:46. doi: 10.3389/fcimb.2020.00046. PubMed DOI PMC
Benaim G., Casanova P., Hernandez-Rodriguez V., Mujica-Gonzalez S., Parra-Gimenez N., Plaza-Rojas L., Concepcion J.L., Liu Y.L., Oldfield E., Paniz-Mondolfi A.E., et al. Dronedarone, an amiodarone analog with an improved anti-Leishmania mexicana efficacy. Antimicrob. Agents Chemother. 2014;58:2295–2303. doi: 10.1128/AAC.01240-13. PubMed DOI PMC
GraphPad Prism version 5.3 (GraphPad Prism Software Inc., La Jolla, CA, USA, 1992–2004) [(accessed on 1 February 2023)]. Available online: https://www.graphpad.com/features.
Elderfield R.C., Gensler W.J., Birstein O., Kreysa F.J., Maynard J.T., Galbreath J. Synthesis of certain simple 4-aminoquinoline derivatives. J. Am. Chem. Soc. 1946;68:1250–1251. doi: 10.1021/ja01211a032. PubMed DOI
Chiyanzu I., Clarkson C., Smith P.J., Lehman J., Gut J., Rosenthal P.J., Chibale K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem. 2005;13:3249–3261. doi: 10.1016/j.bmc.2005.02.037. PubMed DOI
Džubák P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář T.M., Hajdúch M., Poláková M.M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI
Perlíková P., Rylová G., Naus P., Elbert T., Tloustóvá E., Bourderioux A., Postová Slavetínská L., Motyka K., Dolezal D., Znojek P., et al. 7-(2-Thienyl)-7-deazaadenosine (AB61), a new potent nucleoside cytostatic with a complex mode of action. Mol. Cancer Ther. 2016;15:922–937. doi: 10.1158/1535-7163.MCT-14-0933. PubMed DOI