FBXO38 Ubiquitin Ligase Controls Sertoli Cell Maturation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35769260
PubMed Central
PMC9234700
DOI
10.3389/fcell.2022.914053
PII: 914053
Knihovny.cz E-zdroje
- Klíčová slova
- centromere, proteasome, retinoic acid, sertoli cell, spermatogenesis, ubiquitin, ubiquitin ligase,
- Publikační typ
- časopisecké články MeSH
The ubiquitin ligase SCFFBXO38 controls centromeric chromatin by promoting the degradation of the ZXDB protein. To determine the importance of this pathway during development, Fbxo38-deficient mice were generated. The loss of FBXO38 resulted in growth retardation affecting several organs, including the male reproductive system. A detailed analysis of the mutant testes revealed pathological changes in the seminiferous tubules, accompanied by a significant decrease in sperm production and reduced fertility. In adult testes, FBXO38 was specifically expressed in Sertoli cells, a somatic population essential for spermatogenesis initiation and progression. Sertoli cells lacking FBXO38 exhibited stabilized ZXDB protein and upregulated centromeric chromatin. Furthermore, the gene expression profile revealed that the absence of FBXO38 led to a defect in Sertoli cell maturation, specifically characterized by dysregulation in genes controlling retinoic acid metabolism and intercellular communication. Consequently, we documented significant changes in their ability to initiate spermatogonial differentiation. In conclusion, we show that FBXO38 acts as a Sertoli cell maturation factor, affecting the Sertoli cell transcription program, centromere integrity, and, subsequently, the ability to control spermatogenesis.
Zobrazit více v PubMed
Akçimen F., Vural A., Durmuş H., Çakar A., Houlden H., Parman Y. G., et al. (2019). A Novel Homozygous FBXO38 Variant Causes an Early-Onset Distal Hereditary Motor Neuronopathy Type IID. J. Hum. Genet. 64 (11), 1141–1144. 10.1038/s10038-019-0652-y PubMed DOI
Aleksandrova A., Galkin O., Koneni R., Fontes J. D. (2010). An N- and C-Terminal Truncated Isoform of Zinc Finger X-Linked Duplicated C Protein Represses MHC Class II Transcription. Mol. Cell Biochem. 337 (1-2), 1–7. 10.1007/s11010-009-0280-5 PubMed DOI PMC
Auharek S. A., de França L. R. (2010). Postnatal Testis Development, Sertoli Cell Proliferation and Number of Different Spermatogonial Types in C57BL/6J Mice Made Transiently Hypo- and Hyperthyroidic during the Neonatal Period. J. Anat. 216 (5), 577–588. 10.1111/j.1469-7580.2010.01219.x PubMed DOI PMC
Avelar G. F., Oliveira C. F. A., Soares J. M., Silva I. J., Dobrinski I., Hess R. A., et al. (2010). Postnatal Somatic Cell Proliferation and Seminiferous Tubule Maturation in Pigs: A Non-random Event. Theriogenology 74 (1), 11–23. 10.1016/j.theriogenology.2009.12.014 PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A., et al. (2016). Heatmapper: Web-Enabled Heat Mapping for All. Nucleic Acids Res. 44 (W1), W147–W153. 10.1093/nar/gkw419 PubMed DOI PMC
Baek K., Scott D. C., Schulman B. A. (2021). NEDD8 and Ubiquitin Ligation by Cullin-RING E3 Ligases. Curr. Opin. Struct. Biol. 67, 101–109. 10.1016/j.sbi.2020.10.007 PubMed DOI PMC
Bagheri-Fam S., Argentaro A., Svingen T., Combes A. N., Sinclair A. H., Koopman P., et al. (2011). Defective Survival of Proliferating Sertoli Cells and Androgen Receptor Function in a Mouse Model of the ATR-X Syndrome. Hum. Mol. Genet. 20 (11), 2213–2224. 10.1093/hmg/ddr109 PubMed DOI
Baumal R., Bailey D., Giwercman A., Skakkebaek N., Stratis M., Marks A. (1989). A Novel Maturation Marker for Human Sertoli Cells. Int. J. Androl. 12 (5), 354–359. 10.1111/j.1365-2605.1989.tb01324.x PubMed DOI
Bellvé A. R., Millette C. F., Bhatnagar Y. M., O'Brien D. A. (1977). Dissociation of the Mouse Testis and Characterization of Isolated Spermatogenic Cells. J. Histochem Cytochem. 25 (7), 480–494. 10.1177/25.7.893996 PubMed DOI
Birk O. S., Casiano D. E., Wassif C. A., Cogliati T., Zhao L., Zhao Y., et al. (2000). The LIM Homeobox Gene Lhx9 is Essential for Mouse Gonad Formation. Nature 403 (6772), 909–913. 10.1038/35002622 PubMed DOI
Bonnet-Garnier A., Feuerstein P., Chebrout M., Fleurot R., Jan H. U., Debey P., et al. (2012). Genome Organization and Epigenetic Marks in Mouse Germinal Vesicle Oocytes. Int. J. Dev. Biol. 56 (10-12), 877–887. 10.1387/ijdb.120149ab PubMed DOI
Bowles J., Knight D., Smith C., Wilhelm D., Richman J., Mamiya S., et al. (2006). Retinoid Signaling Determines Germ Cell Fate in Mice. Science 312 (5773), 596–600. 10.1126/science.1125691 PubMed DOI
Brown K. E., Amoils S., Horn J. M., Buckle V. J., Higgs D. R., Merkenschlager M., et al. (2001). Expression of α- and β-globin Genes Occurs within Different Nuclear Domains in Haemopoietic Cells. Nat. Cell Biol. 3 (6), 602–606. 10.1038/35078577 PubMed DOI
Chaudhary J., Skinner M. K. (1999). E-box and Cyclic Adenosine Monophosphate Response Elements are Both Required for Follicle-Stimulating Hormone-Induced Transferrin Promoter Activation in Sertoli Cells. Endocrinology 140 (3), 1262–1271. 10.1210/endo.140.3.6597 PubMed DOI
Chen S., Lee B., Lee A. Y.-F., Modzelewski A. J., He L. (2016). Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J. Biol. Chem. 291 (28), 14457–14467. 10.1074/jbc.m116.733154 PubMed DOI PMC
Cunningham F., Achuthan P., Akanni W., Allen J., Amode M. R., Armean I. M., et al. (2019). Ensembl 2019. Nucleic Acids Res. 47 (D1), D745–D751. 10.1093/nar/gky1113 PubMed DOI PMC
Dickinson M. E., Flenniken A. M., Flenniken A. M., Ji X., Teboul L., Wong M. D., et al. (2016). High-throughput Discovery of Novel Developmental Phenotypes. Nature 537 (7621), 508–514. 10.1038/nature19356 PubMed DOI PMC
Earnshaw W. C., Cooke C. A. (1989). Proteins of the Inner and Outer Centromere of Mitotic Chromosomes. Genome 31 (2), 541–552. 10.1139/g89-103 PubMed DOI
Edelsztein N. Y., Kashimada K., Schteingart H. F., Rey R. A. (2020). CYP26B1 Declines Postnatally in Sertoli Cells Independently of Androgen Action in the Mouse Testis. Mol. Reprod. Dev. 87 (1), 66–77. 10.1002/mrd.23302 PubMed DOI
Edgar R., Domrachev M., Lash A. E. (2002). Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 30 (1), 207–210. 10.1093/nar/30.1.207 PubMed DOI PMC
Endo T., Romer K. A., Anderson E. L., Baltus A. E., de Rooij D. G., Page D. C. (2015). Periodic Retinoic Acid-STRA8 Signaling Intersects with Periodic Germ-Cell Competencies to Regulate Spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 112 (18), E2347–E2356. 10.1073/pnas.1505683112 PubMed DOI PMC
Endo T., Freinkman E., de Rooij D. G., Page D. C. (2017). Periodic Production of Retinoic Acid by Meiotic and Somatic Cells Coordinates Four Transitions in Mouse Spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 114 (47), E10132–E41. 10.1073/pnas.1710837114 PubMed DOI PMC
Ernst C., Eling N., Martinez-Jimenez C. P., Marioni J. C., Odom D. T. (2019). Staged Developmental Mapping and X Chromosome Transcriptional Dynamics during Mouse Spermatogenesis. Nat. Commun. 10 (1), 1251. 10.1038/s41467-019-09182-1 PubMed DOI PMC
Ewels P. H. R., Peltzer A., Moreno D., Garcia M., Wang C. (2019). nf-core/rnaseq: nf-core/rnaseq version 1.4.2 (Version 1.4.2). Zenodo.
Figueiredo A. F. A., França L. R., Hess R. A., Costa G. M. J. (2016). Sertoli Cells are Capable of Proliferation into Adulthood in the Transition Region between the Seminiferous Tubules and the Rete Testis in Wistar Rats. Cell Cycle 15 (18), 2486–2496. 10.1080/15384101.2016.1207835 PubMed DOI PMC
Francastel C., Walters M. C., Groudine M., Martin D. I. K. (1999). A Functional Enhancer Suppresses Silencing of a Transgene and Prevents its Localization Close to Centromeric Heterochromatin. Cell 99 (3), 259–269. 10.1016/s0092-8674(00)81657-8 PubMed DOI
Gely-Pernot A., Raverdeau M., Teletin M., Vernet N., Féret B., Klopfenstein M., et al. (2015). Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet. 11 (10), e1005501. 10.1371/journal.pgen.1005501 PubMed DOI PMC
Georges A., Coyaud E., Marcon E., Greenblatt J., Raught B., Frappier L. (2019). USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Sci. Rep. 9 (1), 2724. 10.1038/s41598-019-39368-y PubMed DOI PMC
Gewiss R., Topping T., Griswold M. D. (2020). Cycles, Waves, and Pulses: Retinoic Acid and the Organization of Spermatogenesis. Andrology 8 (4), 892–897. 10.1111/andr.12722 PubMed DOI PMC
Greig G. M., Sharp C. B., Carrel L., Willard H. F. (1993). Duplicated Zinc Finger Protein Genes on the Proximal Short Arm of the Human X Chromosome: Isolation, Characterization and X-Inactivation Studies. Hum. Mol. Genet. 2 (10), 1611–1618. 10.1093/hmg/2.10.1611 PubMed DOI
Griswold M. D. (2016). Spermatogenesis: The Commitment to Meiosis. Physiol. Rev. 96 (1), 1–17. 10.1152/physrev.00013.2015 PubMed DOI PMC
Griswold M. D. (2018). 50 Years of Spermatogenesis: Sertoli Cells and Their Interactions with Germ Cells. Biol. Reprod. 99 (1), 87–100. 10.1093/biolre/ioy027 PubMed DOI PMC
Haaf T., Steinlein C., Schmid M. (1990). Nucleolar Transcriptional Activity in Mouse Sertoli Cells Is Dependent on Centromere Arrangement. Exp. Cell Res. 191 (1), 157–160. 10.1016/0014-4827(90)90051-b PubMed DOI
Hermann B. P., Cheng K., Singh A., Roa-De La Cruz L., Mutoji K. N., Chen I.-C., et al. (2018). The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep. 25 (6), 1650–1667. 10.1016/j.celrep.2018.10.026 PubMed DOI PMC
Hu Z., Dandekar D., O'Shaughnessy P. J., De Gendt K., Verhoeven G., Wilkinson M. F. (2010). Androgen-induced Rhox Homeobox Genes Modulate the Expression of AR-regulated Genes. Mol. Endocrinol. 24 (1), 60–75. 10.1210/me.2009-0303 PubMed DOI PMC
Hudson D. F., Fowler K. J., Earle E., Saffery R., Kalitsis P., Trowell H., et al. (1998). Centromere Protein B Null Mice are Mitotically and Meiotically Normal but Have Lower Body and Testis Weights. J. Cell Biol. 141 (2), 309–319. 10.1083/jcb.141.2.309 PubMed DOI PMC
Jiang X., Ma T., Zhang Y., Zhang H., Yin S., Zheng W., et al. (2015). Specific Deletion of Cdh2 in Sertoli Cells Leads to Altered Meiotic Progression and Subfertility of Mice. Biol. Reprod. 92 (3), 79. 10.1095/biolreprod.114.126334 PubMed DOI
Kim D., Langmead B., Salzberg S. L. (2015). HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 12 (4), 357–360. 10.1038/nmeth.3317 PubMed DOI PMC
Koubova J., Menke D. B., Zhou Q., Capel B., Griswold M. D., Page D. C. (2006). Retinoic Acid Regulates Sex-specific Timing of Meiotic Initiation in Mice. Proc. Natl. Acad. Sci. U.S.A. 103 (8), 2474–2479. 10.1073/pnas.0510813103 PubMed DOI PMC
Krause W. (1977). Serum Gonadotropins in the Rat after Prenatal Damage to the Testes by Busulfan and Their Reaction to Cryptorchidism, Castration and Administration of Testosterone. Arzneimittelforschung 27 (2), 401–403. PubMed
Kresoja-Rakic J., Santoro R. (2019). Nucleolus and rRNA Gene Chromatin in Early Embryo Development. Trends Genet. 35 (11), 868–879. 10.1016/j.tig.2019.06.005 PubMed DOI PMC
Krzanowska H., Bilinska B. (2000). Number of Chromocentres in the Nuclei of Mouse Sertoli Cells in Relation to the Strain and Age of Males from Puberty to Senescence. J. Reprod. Fertil. 118 (2), 343–350. 10.1530/reprod/118.2.343 PubMed DOI
Lakpour M. R., Aghajanpour S., Koruji M., Shahverdi A., Sadighi-Gilani M. A., Sabbaghian M., et al. (2017). Isolation, Culture and Characterization of Human Sertoli Cells by Flow Cytometry: Development of Procedure. J. Reprod. Infertil. 18 (2), 213–217. PubMed PMC
Li H., MacLean G., Cameron D., Clagett-Dame M., Petkovich M. (2009). Cyp26b1 Expression in Murine Sertoli Cells is Required to Maintain Male Germ Cells in an Undifferentiated State during Embryogenesis. PLoS One 4 (10), e7501. 10.1371/journal.pone.0007501 PubMed DOI PMC
Liao Y., Smyth G. K., Shi W. (2014). FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 30 (7), 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Lipshultz L. I., Murthy L., Tindall D. J. (1982). Characterization of Human Sertoli Cells In Vitro . J. Clin. Endocrinol. Metabolism 55 (2), 228–237. 10.1210/jcem-55-2-228 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15 (12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
MacLean G., Li H., Metzger D., Chambon P., Petkovich M. (2007). Apoptotic Extinction of Germ Cells in Testes of Cyp26b1 Knockout Mice. Endocrinology 148 (10), 4560–4567. 10.1210/en.2007-0492 PubMed DOI
Maggi L. B., Kuchenruether M., Dadey D. Y. A., Schwope R. M., Grisendi S., Townsend R. R., et al. (2008). Nucleophosmin Serves as a Rate-Limiting Nuclear Export Chaperone for the Mammalian Ribosome. Mol. Cell Biol. 28 (23), 7050–7065. 10.1128/mcb.01548-07 PubMed DOI PMC
Mahi N. A., Najafabadi M. F., Pilarczyk M., Kouril M., Medvedovic M. (2019). GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-Seq Data. Sci. Rep. 9 (1), 7580. 10.1038/s41598-019-43935-8 PubMed DOI PMC
Meng X., Liu X., Guo X., Jiang S., Chen T., Hu Z., et al. (2018). FBXO38 Mediates PD-1 Ubiquitination and Regulates Anti-tumour Immunity of T Cells. Nature 564 (7734), 130–135. 10.1038/s41586-018-0756-0 PubMed DOI
Meroni S. B., Galardo M. N., Rindone G., Gorga A., Riera M. F., Cigorraga S. B. (2019). Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front. Endocrinol. 10, 224. 10.3389/fendo.2019.00224 PubMed DOI PMC
Milanovich S., Peterson J., Allred J., Stelloh C., Rajasekaran K., Fisher J., et al. (2015). Sall4 Overexpression Blocks Murine Hematopoiesis in a Dose-dependent Manner. Exp. Hematol. 43 (1), 53–64. 10.1016/j.exphem.2014.09.004 PubMed DOI PMC
Morimoto Y., Ono S., Imamura A., Okazaki Y., Kinoshita A., Mishima H., et al. (2017). Deep Sequencing Reveals Variations in Somatic Cell Mosaic Mutations between Monozygotic Twins with Discordant Psychiatric Disease. Hum. Genome Var. 4, 17032. 10.1038/hgv.2017.32 PubMed DOI PMC
Oatley J. M., Brinster R. L. (2012). The Germline Stem Cell Niche Unit in Mammalian Testes. Physiol. Rev. 92 (2), 577–595. 10.1152/physrev.00025.2011 PubMed DOI PMC
O'Donnell L., Smith L. B., Rebourcet D. (2022). Sertoli Cells as Key Drivers of Testis Function. Semin. Cell Dev. Biol. 121, 2–9. 10.1016/j.semcdb.2021.06.016 PubMed DOI
Page J., Suja J. A., Santos J. L., Rufas J. S. (1998). Squash Procedure for Protein Immunolocalization in Meiotic Cells. Chromosome Res. 6 (8), 639–642. 10.1023/a:1009209628300 PubMed DOI
Parra M. T., Viera A., Gómez R., Page J., Carmena M., Earnshaw W. C., et al. (2003). Dynamic Relocalization of the Chromosomal Passenger Complex Proteins Inner Centromere Protein (INCENP) and Aurora-B Kinase during Male Mouse Meiosis. J. Cell Sci. 116 (Pt 6), 961–974. 10.1242/jcs.00330 PubMed DOI
Pellegrini M., Grimaldi P., Rossi P., Geremia R., Dolci S. (2003). Developmental Expression of BMP4/ALK3/SMAD5 Signaling Pathway in the Mouse Testis: A Potential Role of BMP4 in Spermatogonia Differentiation. J. Cell Sci. 116 (Pt 16), 3363–3372. 10.1242/jcs.00650 PubMed DOI
Raverdeau M., Gely-Pernot A., Féret B., Dennefeld C., Benoit G., Davidson I., et al. (2012). Retinoic Acid Induces Sertoli Cell Paracrine Signals for Spermatogonia Differentiation but Cell Autonomously Drives Spermatocyte Meiosis. Proc. Natl. Acad. Sci. U.S.A. 109 (41), 16582–16587. 10.1073/pnas.1214936109 PubMed DOI PMC
Saferali A., Yun J. H., Parker M. M., Sakornsakolpat P., Chase R. P., Lamb A., et al. (2019). Analysis of Genetically Driven Alternative Splicing Identifies FBXO38 as a Novel COPD Susceptibility Gene. PLoS Genet. 15 (7), e1008229. 10.1371/journal.pgen.1008229 PubMed DOI PMC
Shang D., Dong L., Zeng L., Yang R., Xu J., Wu Y., et al. (2015). Two-stage Comprehensive Evaluation of Genetic Susceptibility of Common Variants in FBXO38, AP3B2 and WHAMM to Severe Chronic Periodontitis. Sci. Rep. 5, 17882. 10.1038/srep17882 PubMed DOI PMC
Siu M. K. Y., Cheng C. Y. (2004). Extracellular Matrix: Recent Advances on its Role in Junction Dynamics in the Seminiferous Epithelium during Spermatogenesis. Biol. Reprod. 71 (2), 375–391. 10.1095/biolreprod.104.028225 PubMed DOI
Skaar J. R., Pagan J. K., Pagano M. (2013). Mechanisms and Function of Substrate Recruitment by F-Box Proteins. Nat. Rev. Mol. Cell Biol. 14 (6), 369–381. 10.1038/nrm3582 PubMed DOI PMC
Smaldone S., Laub F., Else C., Dragomir C., Ramirez F. (2004). Identification of MoKA, a Novel F-Box Protein that Modulates Krüppel-like Transcription Factor 7 Activity. Mol. Cell Biol. 24 (3), 1058–1069. 10.1128/mcb.24.3.1058-1069.2004 PubMed DOI PMC
Sumner C. J., d’Ydewalle C., Wooley J., Fawcett K. A., Hernandez D., Gardiner A. R., et al. (2013). A Dominant Mutation in FBXO38 Causes Distal Spinal Muscular Atrophy with Calf Predominance. Am. J. Hum. Genet. 93 (5), 976–983. 10.1016/j.ajhg.2013.10.006 PubMed DOI PMC
Wijchers P. J., Geeven G., Eyres M., Bergsma A. J., Janssen M., Verstegen M., et al. (2015). Characterization and Dynamics of Pericentromere-Associated Domains in Mice. Genome Res. 25 (7), 958–969. 10.1101/gr.186643.114 PubMed DOI PMC
Wu X., Gao S., Wang L., Bu T., Wu S., Zhou L., et al. (2022). Role of Laminin and Collagen Chains in Human Spermatogenesis - Insights from Studies in Rodents and scRNA-Seq Transcriptome Profiling. Semin. Cell Dev. Biol. 121, 125–132. 10.1016/j.semcdb.2021.07.011 PubMed DOI
Yamaguchi Y. L., Tanaka S. S., Kumagai M., Fujimoto Y., Terabayashi T., Matsui Y., et al. (2015). Sall4 is Essential for Mouse Primordial Germ Cell Specification by Suppressing Somatic Cell Program Genes. Stem Cells 33 (1), 289–300. 10.1002/stem.1853 PubMed DOI
Young M. D., Wakefield M. J., Smyth G. K., Oshlack A. (2010). Gene Ontology Analysis for RNA-seq: Accounting for Selection Bias. Genome Biol. 11 (2), R14. 10.1186/gb-2010-11-2-r14 PubMed DOI PMC
Yung B. Y.-M., Busch R. K., Busch H., Mauger A. B., Chan P.-K. (1985). Effects of Actinomycin D Analogs on Nucleolar Phosphoprotein B23 (37,000 daltons/pI 5.1). Biochem. Pharmacol. 34 (22), 4059–4063. 10.1016/0006-2952(85)90387-9 PubMed DOI
Zimmermann C., Stévant I., Borel C., Conne B., Pitetti J.-L., Calvel P., et al. (2015). Research Resource: The Dynamic Transcriptional Profile of Sertoli Cells during the Progression of Spermatogenesis. Mol. Endocrinol. 29 (4), 627–642. 10.1210/me.2014-1356 PubMed DOI PMC
FBXO38 is dispensable for PD-1 regulation
FBXO38 Ubiquitin Ligase Controls Centromere Integrity via ZXDA/B Stability