Protocol for multicentre comparison of interictal high-frequency oscillations as a predictor of seizure freedom

. 2022 ; 4 (3) : fcac151. [epub] 20220609

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35770134

Grantová podpora
R01 NS094399 NINDS NIH HHS - United States

In drug-resistant focal epilepsy, interictal high-frequency oscillations (HFOs) recorded from intracranial EEG (iEEG) may provide clinical information for delineating epileptogenic brain tissue. The iEEG electrode contacts that contain HFO are hypothesized to delineate the epileptogenic zone; their resection should then lead to postsurgical seizure freedom. We test whether our prospective definition of clinically relevant HFO is in agreement with postsurgical seizure outcome. The algorithm is fully automated and is equally applied to all data sets. The aim is to assess the reliability of the proposed detector and analysis approach. We use an automated data-independent prospective definition of clinically relevant HFO that has been validated in data from two independent epilepsy centres. In this study, we combine retrospectively collected data sets from nine independent epilepsy centres. The analysis is blinded to clinical outcome. We use iEEG recordings during NREM sleep with a minimum of 12 epochs of 5 min of NREM sleep. We automatically detect HFO in the ripple (80-250 Hz) and in the fast ripple (250-500 Hz) band. There is no manual rejection of events in this fully automated algorithm. The type of HFO that we consider clinically relevant is defined as the simultaneous occurrence of a fast ripple and a ripple. We calculate the temporal consistency of each patient's HFO rates over several data epochs within and between nights. Patients with temporal consistency <50% are excluded from further analysis. We determine whether all electrode contacts with high HFO rate are included in the resection volume and whether seizure freedom (ILAE 1) was achieved at ≥2 years follow-up. Applying a previously validated algorithm to a large cohort from several independent epilepsy centres may advance the clinical relevance and the generalizability of HFO analysis as essential next step for use of HFO in clinical practice.

Zobrazit více v PubMed

Ryvlin P, Rheims S. Predicting epilepsy surgery outcome. Curr Opin Neurol. 2016;29:182–188. PubMed

Jehi L. The epileptogenic zone: Concept and definition. Epilepsy Curr. 2018;18:12–16. PubMed PMC

Wieser HG, Blume WT, Fish D, et al. . ILAE commission report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001; 42:282–286. PubMed

Jobst BC, Bartolomei F, Diehl B, et al. . Intracranial EEG in the 21st Century. Epilepsy Curr. 2020;20:180–188. PubMed PMC

Frauscher B. Localizing the epileptogenic zone. Curr Opin Neurol. 2020;33:198–206. PubMed

Bartolomei F, Trebuchon A, Bonini F, et al. . What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study. Clin Neurophysiol. 2016;127:1157–1162. PubMed

Liu S, Quach MM, Curry DJ, Ummat M, Seto E, Ince NF. High-frequency oscillations detected in ECoG recordings correlate with cavernous malformation and seizure-free outcome in a child with focal epilepsy: A case report. Epilepsia Open. 2017;2:267–272. PubMed PMC

Akiyama T, McCoy B, Go CY, et al. . Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia. 2011;52:1802–1811. PubMed

Jacobs J, Zijlmans M, Zelmann R, et al. . High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67:209–220. PubMed PMC

Sumsky SL, Santaniello S. Decision support system for seizure onset zone localization based on channel ranking and high-frequency EEG activity. IEEE J Biomed Health Inform. 2019;23:1535–1545. PubMed

Cuello-Oderiz C, von Ellenrieder N, Sankhe R, et al. . Value of ictal and interictal epileptiform discharges and high frequency oscillations for delineating the epileptogenic zone in patients with focal cortical dysplasia. Clin Neurophysiol. 2018;129:1311–1319. PubMed

Schonberger J, Huber C, Lachner-Piza D, et al. . Interictal fast ripples are associated with the seizure-generating lesion in patients with dual pathology. Front Neurol. 2020;11:573975. PubMed PMC

Roehri N, Pizzo F, Lagarde S, et al. . High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol. 2018;83:84–97. PubMed

Cimbalnik J, Kucewicz MT, Worrell G. Interictal high-frequency oscillations in focal human epilepsy. Curr Opin Neurol. 2016;29:175–181. PubMed PMC

Weiss SA, Berry B, Chervoneva I, et al. . Visually validated semi-automatic high-frequency oscillation detection aides the delineation of epileptogenic regions during intra-operative electrocorticography. Clin Neurophysiol. 2018;129:2089–2098. PubMed

Nariai H, Hussain SA, Bernardo D, et al. . Prospective observational study: Fast ripple localization delineates the epileptogenic zone. Clin Neurophysiol. 2019;130:2144–2152. PubMed

Fedele T, Burnos S, Boran E, et al. . Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci Rep. 2017;7:13836. PubMed PMC

Sindhu K R, Staba R, Lopour BA. Trends in the use of automated algorithms for the detection of high-frequency oscillations associated with human epilepsy. Epilepsia. 2020;61:1553–1569. PubMed

Nevalainen P, von Ellenrieder N, Klimeš P, Dubeau F, Frauscher B, Gotman J. Association of fast ripples on intracranial EEG and outcomes after epilepsy surgery. Neurology. 2020;95:e2235–e2245. PubMed PMC

Jacobs J, Wu JY, Perucca P, et al. . Removing high-frequency oscillations: A prospective multicenter study on seizure outcome. Neurology. 2018;91:e1040–e1052. PubMed PMC

Burnos S, Frauscher B, Zelmann R, Haegelen C, Sarnthein J, Gotman J. The morphology of high frequency oscillations (HFO) does not improve delineating the epileptogenic zone. Clin Neurophysiol. 2016;127:2140–2148. PubMed

Dimakopoulos V, Megevand P, Boran E, et al. . Blinded study: Prospectively defined high-frequency oscillations predict seizure outcome in individual patients. Brain Commun. 2021;3:fcab209. PubMed PMC

Gliske SV, Irwin ZT, Chestek C, et al. . Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat Commun. 2018;9:2155. PubMed PMC

Gliske SV, Qin ZA, Lau K, et al. . Distinguishing false and true positive detections of high frequency oscillations. J Neural Eng. 2020;17:056005. PubMed PMC

Fedele T, Ramantani G, Sarnthein J. High frequency oscillations as markers of epileptogenic tissue - End of the party? Clinical Neurophysiol. 2019;130:624–626. PubMed

Frauscher B, von Ellenrieder N, Zelmann R, et al. . High-frequency oscillations in the normal human brain. Ann Neurol. 2018;84:374–385. PubMed

von Ellenrieder N, Dubeau F, Gotman J, Frauscher B. Physiological and pathological high-frequency oscillations have distinct sleep-homeostatic properties. Neuroimage Clin. 2017;14:566–573. PubMed PMC

Pail M, Cimbálník J, Roman R, et al. . High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Sci Rep. 2020;10:18147. PubMed PMC

Boran E, Stieglitz L, Sarnthein J. Epileptic high-frequency oscillations in intracranial EEG are not confounded by cognitive tasks. Front Hum Neurosci. 2021;15:613125. PubMed PMC

Benar CG, Chauviere L, Bartolomei F, Wendling F. Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on “false” ripples. Clin Neurophysiol. 2010;121:301–310. PubMed

Frauscher B, Bartolomei F, Kobayashi K, et al. . High-frequency oscillations: The state of clinical research. Epilepsia. 2017;58:1316–1329. PubMed PMC

Petrik S, San Antonio-Arce V, Steinhoff BJ, et al. . Epilepsy surgery: Late seizure recurrence after initial complete seizure freedom. Epilepsia. 2021;62:1092–1104. PubMed

Holdgraf C, Appelhoff S, Bickel S, et al. . iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Sci Data. 2019;6:102. PubMed PMC

Demuru M, van Blooijs D, Zweiphenning W, et al. . A practical workflow for organizing clinical intraoperative and long-term iEEG data in BIDS. Neuroinformatics. 2020.10.1007/s12021-022-09567-6. PubMed DOI PMC

Medina Villalon S, Paz R, Roehri N, et al. . EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG. J Neurosci Methods. 2018;303:7–15. PubMed

Roehri N, Medina Villalon S, Jegou A, et al. . Transfer, collection and organisation of electrophysiological and imaging data for multicentre studies. Neuroinformatics. 2021;19:639–647. PubMed

Groppe DM, Bickel S, Dykstra AR, et al. . iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J Neurosci Methods. 2017;281:40–48. PubMed

Oderiz CC, von Ellenrieder N, Dubeau F, et al. . Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurol. 2019;76:1070–1078. PubMed PMC

Zelmann R, Mari F, Jacobs J, Zijlmans M, Chander R, Gotman J. Automatic detector of high frequency oscillations for human recordings with macroelectrodes. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2329–2333. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...