Fluid Shear Stress Promotes Osteoblast Proliferation and Suppresses Mitochondrial-Mediated Osteoblast Apoptosis Through the miR-214-3p-ATF4 Signaling Axis

. 2022 Aug 31 ; 71 (4) : 527-538. [epub] 20220630

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35770472

MicroRNAs (miRNAs) play vital roles in bone metabolism and participate in the mechanically induced bone alterations. The underlying molecular mechanisms by which fluid shear stress (FSS) regulate the proliferative and apoptotic phenotypic changes of osteoblasts remain elusive. The study aimed to investigate the regulatory effects of FSS on osteoblast proliferative and apoptotic phenotypes and the roles of miR-214-3p-ATF4 (activating transcription factor 4) signaling axis in the mechanomodulation processes. FSS promoted the proliferative activity of osteoblasts and suppressed mitochondrial-mediated osteoblast apoptosis. FSS decreased miR-214-3p expression and increased ATF4 expression in MC3T3-E1 osteoblasts. MiR-214-3p inhibited osteoblast proliferative activity and promoted mitochondrial-mediated osteoblast apoptosis. Overexpression of miR-214-3p attenuated FSS-enhanced osteoblast proliferation and FSS-suppressed mitochondrial-mediated osteoblast apoptosis. We validated that ATF4 acted as a target gene of miR-214-3p. Moreover, miR-214 3p regulated osteoblast proliferation and apoptosis through targeting ATF4. Taken together, our study proved that FSS could suppress mitochondrial-mediated osteoblast apoptosis and promote osteoblast proliferation through the miR-214-3p-ATF4 signaling axis.

Zobrazit více v PubMed

Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–786. doi: 10.1016/S8756-3282(02)00707-X. PubMed DOI

Zhang Y, Wang F, Bao L, Li J, Shi Z, Wang J. Cyclic hydrostatic compress force regulates apoptosis of meniscus fibrochondrocytes via integrin alpha5beta1. Physiol Res. 2019;68:639–649. doi: 10.33549/physiolres.934088. PubMed DOI

Kufahl RH, Saha S. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae in bone tissue. J Biomech. 1990;23:171–180. doi: 10.1016/0021-9290(90)90350-C. PubMed DOI

Knothe Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and Its potential role in bone metabolism and functional adaptation. Am J Med Sci. 1998;316:189–195. doi: 10.1097/00000441-199809000-00007. PubMed DOI

Yu L, Ma X, Sun J, Tong J, Shi L, Sun L, Zhang J. Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway. Mol Med Rep. 2017;16:8699–8708. doi: 10.3892/mmr.2017.7720. PubMed DOI PMC

Wittkowske C, Reilly GC, Lacroix D, Perrault CM. In vitro bone cell models:impact of fluid shear stress on bone formation. Front Bioeng Biotechnol. 2016;4:87. doi: 10.3389/fbioe.2016.00087. PubMed DOI PMC

Cabahug-Zuckerman P, Stout RF, Jr, Majeska RJ, Thi MM, Spray DC, Weinbaum S, Schaffler MB. Potential role for a specialized beta3 integrin-based structure on osteocyte processes in bone mechanosensation. J Orthop Res. 2018;36:642–652. doi: 10.1002/jor.23792. PubMed DOI PMC

Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev. 2019;11:729–743. doi: 10.1007/s12551-019-00596-1. PubMed DOI PMC

Basso N, Heersche JNM. Characteristics of in vitro osteoblastic cell loading models. Bone. 2002;30:347–351. doi: 10.1016/S8756-3282(01)00678-0. PubMed DOI

Davidson RM, Lingenbrink PA, Norton LA. Continuous mechanical loading alters properties of mechanosensitive channels in G292 osteoblastic cells. Calcif Tissue Int. 1996;59:500–504. doi: 10.1007/BF00369218. PubMed DOI

Rawlinson SC, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone. 1996;19:609–614. doi: 10.1016/S8756-3282(96)00260-8. PubMed DOI

Kurata K, Uemura T, Nemoto A, Tateishi T, Murakami T, Higaki H, Miura H, Iwamoto Y. Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture. J Bone Miner Res. 2001;16:722–730. doi: 10.1359/jbmr.2001.16.4.722. PubMed DOI

Yellowley CE, Jacobs CR, Li Z, Zhou Z, Donahue HJ. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am J Physiol. 1997;273:30–36. doi: 10.1152/ajpcell.1997.273.1.C30. PubMed DOI

Zhang K, Liu X, Wang L, Liu Z, Yi Q, Geng B, Chen X, Yu D, Xia Y. The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism:A systematic review. Arch Biochem Biophys. 2021;711:109020. doi: 10.1016/j.abb.2021.109020. PubMed DOI

Ozcivici E, Luu YK, Rubin CT, Judex S. Low-level vibrations retain bone marrow’s osteogenic potential and augment recovery of trabecular bone during reambulation. PloS one. 2010;5:e11178. doi: 10.1371/journal.pone.0011178. PubMed DOI PMC

Leucht P, Kim JB, Wazen R, Currey JA, Nanci A, Brunski JB, Helms JA. Effect of mechanical stimuli on skeletal regeneration around implants. Bone. 2007;40:919–930. doi: 10.1016/j.bone.2006.10.027. PubMed DOI PMC

Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat Commun. 2021;12:1031. doi: 10.1038/s41467-021-21325-x. PubMed DOI PMC

Shi K, Lu J, Zhao Y, Wang L, Li J, Qi B, Li H, Ma C. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone. 2013;55:487–494. doi: 10.1016/j.bone.2013.04.002. PubMed DOI

Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y. miR-214 targets ATF4 to inhibit bone formation. Nat Med. 2013;19:93–100. doi: 10.1038/nm.3026. PubMed DOI

Zhao X, Xu D, Li Y, Zhang J, Liu T, Ji Y, Wang J, Zhou G, Xie X. MicroRNAs regulate bone metabolism. J Bone Miner Metab. 2014;32:221–231. doi: 10.1007/s00774-013-0537-7. PubMed DOI

Gao Y, Patil S, Qian A. The role of microRNAs in bone metabolism and disease. Int J Mol Sci. 2020;21:6081. doi: 10.3390/ijms21176081. PubMed DOI PMC

Taipaleenmaki H. Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep. 2018;16:1–12. doi: 10.1007/s11914-018-0417-0. PubMed DOI

Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, Lei L, Chen X, Tickner J, Xu J, Zou J. Mechanical stress regulates bone metabolism through microRNAs. J Cell Physiol. 2017;232:1239–1245. doi: 10.1002/jcp.25688. PubMed DOI

Chen Z, Zhang Y, Liang C, Chen L, Zhang G, Qian A. Mechanosensitive miRNAs and bone formation. Int J Mol Sci. 2017;18:1684. doi: 10.3390/ijms18081684. PubMed DOI PMC

Wang Y, Zou X, Guo Y, Wang L, Liu Y, Zeng Q, Zhang X. Mechanical strain affects some microrna profiles in pre-oeteoblasts. Cell Mol Biol Lett. 2015;20:586–596. doi: 10.1515/cmble-2015-0034. PubMed DOI

Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X, Chen X. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res. 2015;30:330–345. doi: 10.1002/jbmr.2352. PubMed DOI

Yuan Y, Guo J, Zhang L, Tong X, Zhang S, Zhou X, Zhang M, Chen X, Lei L, Li H, Liu TCY, Xu J, Zou J. MiR-214 attenuates the osteogenic effects of mechanical loading on osteoblasts. Int J Sports Med. 2019;40:931–940. doi: 10.1055/a-1015-0285. PubMed DOI

Mohan S, Wergedal JE, Das S, Kesavan C. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise. Physiol Genomics. 2015;47:33–43. doi: 10.1152/physiolgenomics.00107.2014. PubMed DOI PMC

Chen Y, Mohammed A, Oubaidin M, Evans CA, Zhou X, Luan X, Diekwisch TG, Atsawasuwan P. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene. 2015;566:13–17. doi: 10.1016/j.gene.2015.03.055. PubMed DOI

Iwawaki Y, Mizusawa N, Iwata T, Higaki N, Goto T, Watanabe M, Tomotake Y, Ichikawa T, Yoshimoto K. MiR-494-3p induced by compressive force inhibits cell proliferation in MC3T3-E1 cells. J Biosci Bioeng. 2015;120:456–462. doi: 10.1016/j.jbiosc.2015.02.006. PubMed DOI

Sun Z, Cao X, Hu Z, Zhang L, Wang H, Zhou H, Li D, Zhang S, Xie M. MiR-103 inhibits osteoblast proliferation mainly through suppressing Cav1.2 expression in simulated microgravity. Bone. 2015;76:121–128. doi: 10.1016/j.bone.2015.04.006. PubMed DOI

Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, Zhou H, Li D, Zhang S, Xie M. Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep. 2015;5:8077. doi: 10.1038/srep08077. PubMed DOI PMC

Liu M, Sun Y, Zhang Q. Emerging role of extracellular vesicles in bone remodeling. J Dent Res. 2018;97:859–868. doi: 10.1177/0022034518764411. PubMed DOI

Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J. AAV-Anti-miR-214 prevents collapse of the femoral head in osteonecrosis by regulating osteoblast and osteoclast activities. Mol Ther Nucleic Acids. 2019;18:841–850. doi: 10.1016/j.omtn.2019.09.030. PubMed DOI PMC

Zheng D, Zang Y, Xu H, Wang Y, Cao X, Wang T, Pan M, Shi J, Li X. MicroRNA-214 promotes the calcification of human aortic valve interstitial cells through the acceleration of inflammatory reactions with activated MyD88/NF-κB signaling. Clin Res Cardiol. 2019;108:691–702. doi: 10.1007/s00392-018-1398-9. PubMed DOI

Li N, Bai Y, Zhou G, Ma Y, Tan M, Qiao F, Li X, Shen M, Song X, Zhao X, Liu X, Xu Z. miR-214 attenuates aortic valve calcification by regulating osteogenic differentiation of valvular interstitial cells. Mol Ther Nucleic Acids. 2020;22:971–980. doi: 10.1016/j.omtn.2020.10.016. PubMed DOI PMC

Yao X, Wu L, Gu Z, Li J. LINC01535 promotes the development of osteosarcoma through modulating miR-214-3p/KCNC4 axis. Cancer Manag Res. 2020;12:5575–5585. doi: 10.2147/CMAR.S232757. PubMed DOI PMC

Ramazzotti G, Bavelloni A, Blalock W, Piazzi M, Cocco L, Faenza I. BMP-2 induced expression of PLCbeta1 that is a positive regulator of osteoblast differentiation. J Cell Physiol. 2016;231:623–629. doi: 10.1002/jcp.25107. PubMed DOI

Liu Z, Huang F, Luo G, Wang Y, Du R, Sun W, Li J, Yuan X, Cao D, Li Y, Liu C, Liang S, Jin X, Ling S, Wang D, Li Y. miR-214 stimulated by IL-17A regulates bone loss in patients with ankylosing spondylitis. Rheumatology (Oxford) 2020;59:1159–1169. doi: 10.1093/rheumatology/kez594. PubMed DOI

Yang C, Gu Z, Ding R, Huang C, Li Q, Xie D, Zhang R, Qiu Y. Long non-coding RNA MEG3 silencing and microRNA-214 restoration elevate osteoprotegerin expression to ameliorate osteoporosis by limiting TXNIP. J Cell Mol Med. 2021;25:2025–2039. doi: 10.1111/jcmm.16096. PubMed DOI PMC

Zhong D, Xu GZ, Wu JZ, Liu H, Tang JY, Wang CG. Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis. 2021;12:340. doi: 10.1038/s41419-021-03586-y. PubMed DOI PMC

Peng W, Zhu S, Chen J, Wang J, Rong Q, Chen S. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3. Biomed Pharmacother. 2019;109:1709–1717. doi: 10.1016/j.biopha.2018.10.159. PubMed DOI

Feng Y, Wan P, Yin L. Long noncoding RNA X-inactive specific transcript (XIST) promotes osteogenic differentiation of periodontal ligament stem cells by sponging microRNA-214-3p. Med Sci Monit. 2020;26:e918932. doi: 10.12659/MSM.918932. PubMed DOI PMC

Li L, Fang J, Liu Y, Xiao L. LncRNA LOC100506178 promotes osteogenic differentiation via regulating miR-214-5p-BMP2 axis in human bone marrow mesenchymal stem cells. PeerJ. 2020;8:e8909. doi: 10.7717/peerj.8909. PubMed DOI PMC

Chen J, Yang Y. LncRNA HAGLR absorbing miR-214-3p promotes BMP2 expression and improves tibial fractures. Am J Transl Res. 2021;13:11065–11080. PubMed PMC

He Q, Li R, Hu B, Li X, Wu Y, Sun P, Jia Y, Guo Y. Stromal cell-derived factor-1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA-H19/miR-214-5p/BMP2 axis. J Gene Med. 2021;23:e3366. doi: 10.1002/jgm.3366. PubMed DOI

Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C, He B, Liu B, Shaikh AB, Li F, Wang L, Yang Z, Au DW, Peng S, Zhang Z, Zhang BT, Pan X, Qian A, Shang P, Xiao L, Jiang B, Wong CK, Xu J, Bian Z, Liang Z, Guo DA, Zhu H, Tan W, Lu A, Zhang G. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872. doi: 10.1038/ncomms10872. PubMed DOI PMC

Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol. 2015;12:343–353. doi: 10.1080/15476286.2015.1017205. PubMed DOI PMC

Sun W, Zhao C, Li Y, Wang L, Nie G, Peng J, Wang A, Zhang P, Tian W, Li Q, Song J, Wang C, Xu X, Tian Y, Zhao D, Xu Z, Zhong G, Han B, Ling S, Chang YZ, Li Y. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2016;2:16015. doi: 10.1038/celldisc.2016.15. PubMed DOI PMC

Geng B, Wang CF, Zhang B, Wang J, Jiang J, Tan XY, Chen C, Chen YG, An LP, Ma JL, Xia YY. Fluid shear stress inhibits TNF-alpha-induced osteoblast apoptosis via ERK5 signaling pathway. Biochem Biophys Res Commun. 2015;466:117–123. doi: 10.1016/j.bbrc.2015.08.117. PubMed DOI

Li P, Ma YC, Sheng XY, Dong HT, Han H, Wang J, Xia YY. Cyclic fluid shear stress promotes osteoblastic cells proliferation through ERK5 signaling pathway. Mol Cell Biochem. 2012;364:321–327. doi: 10.1007/s11010-012-1233-y. PubMed DOI

Geng B, Zhang B, Wang J, Jiang J, Tan XY, Chen C, An LP, Ma JL, Wang CF, Chen YG, Xia YY. Fluid shear stress suppresses TNF-alpha-induced apoptosis in MC3T3-E1 cells:Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways. Exp Cell Res. 2016;343:208–217. doi: 10.1016/j.yexcr.2016.03.014. PubMed DOI

Zhang B, Geng B, Wang J, Wang CF, An LP, Ma JL, Jiang J, Tan XY, Chen C, Ding N, Xia YY. Fluid shear stress promotes osteoblast proliferation via the Gαq-ERK5 signaling pathway. Connect Tissue Res. 2016;57:299–306. doi: 10.1080/03008207.2016.1181063. PubMed DOI

Ding N, Geng B, Li ZH, Yang QZ, Yan L, Wan L, Zhang B, Wang CF, Xia YY. Fluid shear stress promotes osteoblast proliferation through the NFATc1-ERK5 pathway. Connect Tissue Res. 2019;60:107–116. doi: 10.1080/03008207.2018.1459588. PubMed DOI

Zhang X, Yu S, Galson DL, Luo M, Fan J, Zhang J, Guan Y, Xiao G. Activating transcription factor 4 is critical for proliferation and survival in primary bone marrow stromal cells and calvarial osteoblasts. J Cell Biochem. 2008;105:885–895. doi: 10.1002/jcb.21888. PubMed DOI PMC

Yu S, Franceschi RT, Luo M, Fan J, Jiang D, Cao H, Kwon TG, Lai Y, Zhang J, Patrene K, Hankenson K, Roodman GD, Xiao G. Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PloS one. 2009;4:e7583. doi: 10.1371/journal.pone.0007583. PubMed DOI PMC

Storlino G, Colaianni G, Sanesi L, Lippo L, Brunetti G, Errede M, Colucci S, Passeri G, Grano M. Irisin prevents disuse-induced osteocyte apoptosis. J Bone Miner Res. 2020;35:766–775. doi: 10.1002/jbmr.3944. PubMed DOI

Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol. 2018;234:231–245. doi: 10.1002/jcp.26856. PubMed DOI

Ou L, Sun T, Cheng Y, Huang L, Zhan X, Zhang P, Yang J, Zhang Y, Zhou Z. MicroRNA-214 contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated periodontitis. J Cell Biochem. 2019;120:14791–14803. doi: 10.1002/jcb.28740. PubMed DOI

Wang X, He J, Wang H, Zhao D, Geng B, Wang S, An J, Wang C, Han H, Xia Y. Fluid shear stress regulates osteoblast proliferation and apoptosis via the lncRNA TUG1/miR-34a/FGFR1 axis. J Cell Mol Med. 2021;25:8734–8747. doi: 10.1111/jcmm.16829. PubMed DOI PMC

Wang X, Geng B, Wang H, Wang S, Zhao D, He J, Lu F, An J, Wang C, Xia Y. Fluid shear stress-induced down-regulation of microRNA-140-5p promotes osteoblast proliferation by targeting VEGFA via the ERK5 pathway. Connect Tissue Res. 2022;63:156–168. doi: 10.1080/03008207.2021.1891228. PubMed DOI

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...