Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies

. 2022 Jul 06 ; 12 (1) : 11431. [epub] 20220706

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35794190
Odkazy

PubMed 35794190
PubMed Central PMC9259627
DOI 10.1038/s41598-022-14984-3
PII: 10.1038/s41598-022-14984-3
Knihovny.cz E-zdroje

Emergent application of antimicrobial strategies as symptomatic treatment in coronavirus disease (COVID-19) and linkage of severe acute respiratory syndrome coronavirus2 with microbial infections, has created colossal demand for antimicrobials. For the first time, this communication explore the physicochemical, antifungal, antibacterial, and photocatalytic properties of biogenic magnesium nanoparticles (MgNPs), synthesized using essential oil of Cymbopogon flexuosus's as an efficient multifunctional reducing and stabilizing/capping reagent. It is observed that MgNPs (ranging in size: 8-16 nm) of varying phytochemical compositions (MgS1, MgS2, MgS3) exhibited various useful physicochemical, antimicrobial, and photocatalytic properties. FTIR outcomes highlight the functional biomolecules-assisted reduction of Mg from Mg+ to Mg0. Among all, MgS3-Nps owing to the smallest particle size exhibited superior photocatalytic efficacy (91.2%) for the methylene blue degradation upon direct exposure to the sunlight for 3 h without using any reducing agents. Fabricated MgNPs also exhibited excellent antifungal (against Fusarium oxysporum) and antibacterial (versus Staphylococcus aureus and Escherichia coli) efficacies compared to state-of-the-art antimicrobial agents deployed for the treatment of infectious diseases. Based on this investigated greener approach, imperative from economic and environmental viewpoint, such essential oil based-MgNPs can be a potential nanosystem for various industrial applications where photocatalytic, and biomedical attributes are the key requirements.

Zobrazit více v PubMed

Tiwari S, et al. Antibacterial and antiviral high-performance nano-systems to mitigate new SARS-CoV-2 variants of concerns. Curr. Opin. Biomed. Eng. 2021;21:100363. doi: 10.1016/j.cobme.2021.100363. PubMed DOI PMC

Sadique MA, et al. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J. Mater. Chem. B. 2021;9:4620–4642. doi: 10.1039/D1TB00472G. PubMed DOI

Chaudhary V, et al. Towards 5th generation AI and IoT driven sustainable intelligent sensors based on 2D MXenes and borophene. ECS Sens. Plus. 2022;1:013601. doi: 10.1149/2754-2726/ac5ac6. DOI

Chaurhdary V. One-dimensional variable range charge carrier hopping in polyaniline–tungsten oxide nanocomposite-based hydrazine chemiresistor. Appl. Phys. A. 2021;127:536. doi: 10.1007/s00339-021-04690-8. DOI

Chung J, et al. On the disinfection of electrochemical aptamer-based sensors. ECS Sens. Plus. 2022;1:011604. doi: 10.1149/2754-2726/ac60b2. PubMed DOI PMC

Chaudhary, V. et al. Emergence of MXene–polymer hybrid nanocomposites as high-performance next-generation chemiresistors for efficient air quality monitoring. Adv. Funct. Mater. 2112913. 10.1002/adfm.202112913 (2022).

Chaudhary V, Royal A, Chavali M, Yadav S. Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnol. Environ. Eng. 2021;6:1–15. doi: 10.1007/s41204-021-00102-7. DOI

Sheth Y, et al. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. Chemosphere. 2022;293:133563. doi: 10.1016/j.chemosphere.2022.133563. PubMed DOI

Kiani M, et al. Novel Pt–Ag3PO4/CdS/chitosan nanocomposite with enhanced photocatalytic and biological activities. Nanomaterials. 2020;10:2320. doi: 10.3390/nano10112320. PubMed DOI PMC

Hassanpour M, Safardoust-Hojaghan H, Salavati-Niasari M. Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 2017;229:293–299. doi: 10.1016/j.molliq.2016.12.090. DOI

Silvestri D, et al. A poly (3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI

Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S. Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason. Sonochem. 2017;39:494–503. doi: 10.1016/j.ultsonch.2017.05.025. PubMed DOI

Gholami T, Salavati-Niasari M, Varshoy S. Electrochemical hydrogen storage capacity and optical properties of NiAl2O4/NiO nanocomposite synthesized by green method. Int. J. Hydrog. Energy. 2017;42:5235–5245. doi: 10.1016/j.ijhydene.2016.10.132. DOI

Mir N, Salavati-Niasari M. Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 2013;48:1660–1667. doi: 10.1016/j.materresbull.2013.01.006. DOI

Zinatloo-Ajabshir S, Salavati-Niasari M. Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. B Eng. 2019;174:106930. doi: 10.1016/j.compositesb.2019.106930. DOI

Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Nd2O3–SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 2018;42:171–182. doi: 10.1016/j.ultsonch.2017.11.026. PubMed DOI

Vidhya E, et al. Green fabricated MgO nanoparticles as antimicrobial agent: Characterization and evaluation. Mater. Today Proc. 2021;45:5579–5583. doi: 10.1016/j.matpr.2021.02.311. DOI

Chen X, et al. A magnesium-based coordination container as a multi-drugs co-loaded system for boosting anti-inflammatory therapy in joints. Chem. Eng. J. 2021;415:128939. doi: 10.1016/j.cej.2021.128939. DOI

Abinaya S, Kavitha HP, Prakash M, Muthukrishnaraj A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm. 2021;19:100368. doi: 10.1016/j.scp.2020.100368. DOI

Santos F, et al. Review—Recent advances of electrochemical techniques in food, energy, environment, and forensic applications. ECS Sens. Plus. 2022;1:013603. doi: 10.1149/2754-2726/ac5cdf. DOI

Petrus R, Sobota P. Magnesium and zinc alkoxides and aryloxides supported by commercially available ligands as promoters of chemical transformations of lactic acid derivatives to industrially important fine chemicals. Coord. Chem. Rev. 2019;396:72–88. doi: 10.1016/j.ccr.2019.06.002. DOI

Turner A. Perspective—An age of sensors. ECS Sens. Plus. 2022;1:011601. doi: 10.1149/2754-2726/ac5523. DOI

Kaur I, et al. Comprehensive study on Indian plant extracts mediated biocompatible ZnO nanostructures: a green initiative. ECS Trans. 2022;107:19443. doi: 10.1149/10701.19443ecst. DOI

Iqbal J, et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Jain R, Mendiratta S, Kumar L, Srivastava A. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Curr. Res. Green Sustain. Chem. 2021;4:100086. doi: 10.1016/j.crgsc.2021.100086. DOI

Katiyar NK, Biswas K, Tiwary CS, Machado LD, Gupta RK. Stabilization of a highly concentrated colloidal suspension of pristine metallic nanoparticles. Langmuir. 2019;35:2668–2673. doi: 10.1021/acs.langmuir.8b03401. PubMed DOI

Trang DT, et al. Essential oils of lemongrass (Cymbopogon citratus Stapf) induces apoptosis and cell cycle arrest in A549 lung cancer cells. BioMed. Res. Int. 2020;2020:1–8. doi: 10.1155/2020/5924856. PubMed DOI PMC

Jugreet BS, Suroowan S, Rengasamy RK, Mahomoodally MF. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020;101:89–105. doi: 10.1016/j.tifs.2020.04.025. DOI

Lin T-Y, et al. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials. 2016;104:339–351. doi: 10.1016/j.biomaterials.2016.07.026. PubMed DOI PMC

Jeevanandam J, San Chan Y, Danquah MK. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J. Chem. 2017;41:2800–2814. doi: 10.1039/C6NJ03176E. DOI

Olayemi R, Jawonisi I, Samuel J. Characterization and physico-chemical analysis of essential oil of Cymbopogon citratus leaves. Bayero J. Pure Appl. Sci. 2018;11:74–81. doi: 10.4314/bajopas.v11i1.14. DOI

Song M-R, Chen M, Zhang Z-J. Preparation and characterization of Mg nanoparticles. Mater. Charact. 2008;59:514–518. doi: 10.1016/j.matchar.2007.03.008. DOI

Ouiriemmi I, et al. Towards sustainable removal of methylthioninium chloride by using adsorption-electroradical regeneration. Chemosphere. 2018;210:476–485. doi: 10.1016/j.chemosphere.2018.07.019. PubMed DOI

Ravichandran V, et al. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 2019;15:102565. doi: 10.1016/j.rinp.2019.102565. DOI

Fatiqin A, Amrulloh H, Simanjuntak W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull. Chem. Soc. Ethiop. 2021;35:161–170. doi: 10.4314/bcse.v35i1.14. DOI

Pathania D, et al. Essential oil derived biosynthesis of metallic nano-particles: Implementations above essence. Sustain. Mater. Technol. 2021;30:e00352.

Saidin S, Jumat MA, Amin NAAM, Al-Hammadi ASS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. C. 2021;118:111382. doi: 10.1016/j.msec.2020.111382. PubMed DOI

Sharmila G, et al. Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano-Struct. Nano-Objects. 2019;20:100380. doi: 10.1016/j.nanoso.2019.100380. DOI

Kaur, K., Jayarambabu, N. & Rao, K. V. In IOP Conference Series: Materials Science and Engineering 012045 (IOP Publishing).

Amina M, et al. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS ONE. 2020;15:e0237567. doi: 10.1371/journal.pone.0237567. PubMed DOI PMC

Fahmy H, et al. Review on MgO nanoparticles nultifunctional role in the biomedical field: Properties and applications. Nanomed. J. 2022;9:1–14.

Eissa D, Hegab RH, Abou-Shady A, et al. Green synthesis of ZnO, MgO and SiO2 nanoparticles and its effect on irrigation water, soil properties, and Origanum majorana productivity. Sci. Rep. 2022;12:5780. doi: 10.1038/s41598-022-09423-2. PubMed DOI PMC

Rambabu K, et al. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process. Saf. Environ. Prot. 2019;124:266–278. doi: 10.1016/j.psep.2019.02.015. DOI

Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Gavilanes-Martínez MA, Garzón AC, Cáceres DH, García AM. Antifungal activity of boric acid, triclosan and zinc oxide against different clinically relevant Candida species. Mycoses. 2021;64:1045–1052. doi: 10.1111/myc.13302. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...