Synthesis, Crystal Structures, Lipophilic Properties and Antimicrobial Activity of 5-Pyridylmethylidene-3-rhodanine-carboxyalkyl Acids Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BN.610-147/PBU/2020
Pedagogical University of Krakow
16.16.160.557
The mass spectrometry analyses were partially supported by the subsidy of Polish Ministry of Science and Education to Piotr Suder
PubMed
35807224
PubMed Central
PMC9268742
DOI
10.3390/molecules27133975
PII: molecules27133975
Knihovny.cz E-zdroje
- Klíčová slova
- N···S interaction, antimicrobial activity, crystal structure, electron density, lipophilicity, rhodanine,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- gramnegativní bakterie MeSH
- grampozitivní bakterie MeSH
- mikrobiální testy citlivosti MeSH
- rhodanin * chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- rhodanin * MeSH
The constant increase in the resistance of pathogenic bacteria to the commonly used drugs so far makes it necessary to search for new substances with antibacterial activity. Taking up this challenge, we obtained a series of rhodanine-3-carboxyalkyl acid derivatives containing 2- or 3- or 4-pyridinyl moiety at the C-5 position. These compounds were tested for their antibacterial and antifungal activities. They showed activity against Gram-positive bacteria while they were inactive against Gram-negative bacteria and yeast. In order to explain the relationship between the activity of the compounds and their structure, for selected derivatives crystal structures were determined using the X-ray diffraction method. Modeling of the isosurface of electron density was also performed. For all tested compounds their lipophilicity was determined by the RP-TLC method and by calculation methods. On the basis of the carried-out research, it was found that the derivatives with 1.5 N···S electrostatics interactions between the nitrogen atom in the pyridine moiety and the sulfur atom in the rhodanine system showed the highest biological activity.
Faculty of Chemistry Jagiellonian University in Kraków Gronostajowa 2 30 387 Kraków Poland
Faculty of Chemistry University of Lodz Tamka 12 91 403 Łódź Poland
Institute of Biology Pedagogical University of Krakow Podchorążych 2 30 084 Kraków Poland
Zobrazit více v PubMed
Nencki M. Ueber die Einwirkung der Monochloressigsäure auf Sulfocyansäure und ihre Salze. J. Prakt. Chem. 1877;16:1–17. doi: 10.1002/prac.18770160101. DOI
Kaminsky D., Kryshchyshyn A., Lesyk R. 5-ene-4-thiazolidinones—An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017;40:542–594. doi: 10.1016/j.ejmech.2017.09.031. PubMed DOI PMC
Mousavi S.M., Zarei M., Hashemi S.A., Babapoor A., Amani A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019;47:1132–1148. doi: 10.1080/21691401.2019.1573824. PubMed DOI
Liu J., Wu Y., Piao H., Zhao X., Zhang W., Wang Y., Liu M. A Comprehensive Review on the Biological and Pharmacological Activities of Rhodanine Based Compounds for Research and Development of Drugs. Mini Rev. Med. Chem. 2018;18:948–961. doi: 10.2174/1389557516666160928162724. PubMed DOI
Tarahomi M., Baharfar R., Mohseni M. Synthesis and antibacterial activity evaluation of novel rhodamine based amide derivatives. Clin. Microbiol. Infect. Dis. 2019;4:1–5. doi: 10.15761/CMID.1000157. DOI
Song M.X., Zheng C.J., Deng X.Q., Wei Z.Y., Piao H.R. The synthesis and antibacterial activities of N-carboxymethyl rhodanines. Med. Chem. 2014;4:441–448. doi: 10.4172/2161-0444.1000177. DOI
Kapoor A., Khare N. Antibacterial and antifungal evaluation of Mannich bases of 2,4-thiazolidinedione and rhodanine. Der. Pharm. Lett. 2016;8:143–148.
Shelke R.N., Pansare D.N., Dake S.A., Pawar R.P., Bembalker S.R. Synthesis of new substituted thiazolidine-4-one analogues with anticancer and antimicrobial activity. Acta Chim. Pharm. Indica. 2017;7:119–131.
Kaminskyy D.V. Screening of the antiviral activity in the range of C5 and N3 substituted 4-thiazolidinone derivatives. J. Org. Pharm. Chem. 2015;13:64–69. doi: 10.24959/ophcj.15.819. DOI
Tintori C., Iovenitti G., Ceresola E.R., Ferrarese R., Zamperini C., Brai A., Poli G., Dreassi E., Cagno V., Lembo D., et al. Rhodanine derivatives as potent anti-HIV and antiHSV microbicides. PLoS ONE. 2018;13:e0198478. doi: 10.1371/journal.pone.0198478. PubMed DOI PMC
Dofe V.S., Sarkate A.P., Azad R., Gill C.H. Green synthesis and inhibitory effect of novel quinoline based thiazolidinones on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Res. Chem. Intermed. 2018;44:1149–1160. doi: 10.1007/s11164-017-3157-3. DOI
Pansare D.N., Shelke R.N., Khade M.C., Jadhav V.N., Pawar C.D., Jadhav R.A., Bembalkar S.R. New thiazolone derivatives: Design, synthesis, anticancer and antimicrobial activity. Eur. Chem. Bull. 2019;8:7–14. doi: 10.17628/ecb.2019.8.7-14. DOI
Liang H.X., Yu Y.H., Li X.H., Tang N.F., Hu G.Q., Liu B. Apoptosis of human hepatocellular carcinoma cells SMMC-7721 induced by C-3 methylidene thiazolidinedione acetic acid. Int. J. Clin. Exp. Med. 2019;12:371–377.
Nguyen C.T., Nguyen Q.T., Dao P.H., Nguyen T.L., Nguyen P.T., Nguyen H.H. Synthesis and cytotoxic activity against K562 and MCF7 cell lines of some N-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-((4-oxo-3-phenyl-3,4-dihydroquinazoline-2-yl)thio) acetamide compounds. Hindawi J. Chem. 2019;2019:8. doi: 10.1155/2019/1492316. DOI
Sarkate A.P., Lokwani D.K., Karnik K.S., Shinde D.B. Novel 2-(nitrooxy)ethyl 2-(4-(substituted phenyl)-2-((substituted phenyl)amino)thiazol-5-yl)acetate as Anti-inflammatory, Analgesic and Nitric Oxide Releasing Agents: Synthesis and Molecular Docking Studies. Antiinflamm. Antiallergy Agents Med. Chem. 2017;16:153–167. doi: 10.2174/1871523016666171115125922. PubMed DOI
Tejchman W., Kołodziej P., Kalinowska-Tłuścik J., Nitek W., Żuchowski G., Bogucka-Kocka A., Żesławska E. Discovery of Cinnamylidene Derivative of Rhodanine with High Anthelmintic Activity against Rhabditis sp. Molecules. 2022;27:2155. doi: 10.3390/molecules27072155. PubMed DOI PMC
Sivanadanam J., Mukkamala R., Mandal S., Vedarajan R., Matsumi N., Aidhen I.S., Ramanujam K. Exploring the role of the spacers and acceptors on the triphenylamine-based dyes for dye-sensitized solar cells. Int. J. Hydrog. Energy. 2018;43:4691–4705. doi: 10.1016/j.ijhydene.2017.10.183. DOI
El-sayed S., Metwally K., El-Shanawani A.A., Abdel-Aziz L.M., El-Rashedy A.A., Soliman M.E.S., Quattrini L., Coviello V., Motta C. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. Bioorg. Med. Chem. Lett. 2017;27:4760–4764. doi: 10.1016/j.bmcl.2017.08.050. PubMed DOI
Bacha M.M., Nadeem H., Zaib S., Sarwar S., Imran A., Ur Rahman S., Saqib Ali H., Arif M., Iqbal J. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: Synthesis, biological evaluation, molecular docking and simulation studies. BMC Chem. 2021;15:28. doi: 10.1186/s13065-021-00756-z. PubMed DOI PMC
Radwan A., Elhenawy A.A., Kadh M.S., Hashem F.A., Abd-Elghany R.D. Rhodanine-3-acetic acid derivatives as a new class of potent α-amylase inhibitors. J. Chem. Biol. Phys. Sci. 2020;10:245–249. doi: 10.24214/jcbps.A.10.3.24549. DOI
Abusetta A., Alumairi J., Alkaabi M.Y., Al Ajeil R., Abu Shkaidim A., Akram D., Pajak J., Ghattas M.A., Atatreh N., Al Neyadi S.S. Design, synthesis, in vitro antibacterial activity, and docking studies of new rhodanine derivatives. Open J. Med. Chem. 2020;10:15–34. doi: 10.4236/ojmc.2020.101002. DOI
Chauhan D., Ginson G., Sridhar S.N.C., Bhatia R., Paul A.T., Monga V. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Arch. Pharm. 2019;352:1900029. doi: 10.1002/ardp.201900029. PubMed DOI
Körner H. Über einige Derivate der Dithiocarbamino-essigsäure. Ber. Dtsch. Chem. Ges. 1908;41:1901–1905. doi: 10.1002/cber.19080410265. DOI
Reddy T.N., Ravinder M., Bagul P., Ravikanti K., Bagul C., Nanubolu J.B., Srinivas K., Banerjee S.K., Rao V.J. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs) Eur. J. Med. Chem. 2014;71:53–66. doi: 10.1016/j.ejmech.2013.10.043. PubMed DOI
Agrawal Y.P., Agrawal M.Y., Gupta A.K. Design, synthesis and evaluation of rhodanine derivatives as aldose reductase inhibitors. Chem. Biol. Drug Des. 2015;85:172–180. doi: 10.1111/cbdd.12369. PubMed DOI
Pandey J., Gilhotra R., Gupta A.K. Design, synthesis and evaluation of substituted 5-(2-methoxybenzylidene)-rhodanine ester analogs as aldose reductase inhibitors. Biol. Forum. 2019;11:217–221.
Tejchman W., Korona-Glowniak I., Malm A., Zylewski M., Suder P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res. 2017;26:1316–1324. doi: 10.1007/s00044-017-1852-7. PubMed DOI PMC
Tejchman W., Korona-Glowniak I., Kwietniewski L., Żesławska E., Nitek W., Suder P., Żylewski M., Malm A. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II. Saudi Pharm. J. 2020;28:414–426. doi: 10.1016/j.jsps.2020.02.002. PubMed DOI PMC
Tejchman W., Skórska—Stania A., Żesławska E. The crystal structures of three rhodanine-3-carboxylic acids. J. Chem. Crystallogr. 2016;46:181–187. doi: 10.1007/s10870-016-0644-0. DOI
Żesławska E., Nitek W., Tejchman W. The synthesis and crystal structures of the homologues of epalrestat. J. Chem. Crystallogr. 2015;45:151–157. doi: 10.1007/s10870-015-0577-z. DOI
Bate-Smith E.C., Westall R.G. Chromatographic behaviour and chemical structure I. Some naturally occurring phenolic substances. Biochim. Biophys. Acta. 1950;4:427–440. doi: 10.1016/0006-3002(50)90049-7. DOI
Soczewiński E., Wachtmeister C.A. The relation between the composition of certain ternary two-phase solvent systems and RM values. J. Chromatogr. A. 1962;7:311–325. doi: 10.1016/S0021-9673(01)86422-0. DOI
Gocan S. Encyclopedia of Chromatography. 3rd ed. Taylor & Francis; New York, NY, USA: 2010. Eluotropic series of solvent for TLC; p. 730.
Snyder L.R. Classification off the solvent properties of common liquids. J. Chromatogr. Sci. 1978;16:223–234. doi: 10.1093/chromsci/16.6.223. DOI
Karger B.L., Snyder L.R., Econ C. An expanded solubility parameter treatment for classification and use of chromatographic solvents and adsorbents: Parameters for dispersion, dipole and hydrogen bonding interactions. J. Chromatogr. A. 1976;125:71–88. doi: 10.1016/S0021-9673(00)93812-3. DOI
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Molinspiration Cheminformatics. [(accessed on 7 December 2020)]. Available online: http://www.molinspiration.com.
Singh S., Gupta A.K., Verma A. Molecular Properties and Bioactivity Score of the Aloe Vera Antioxidant Compounds—In Order to Lead Finding. [(accessed on 20 November 2020)];Res. J. Pharm. Biol. Chem. Sci. 2013 4:876–881. Available online: http://rjpbcs.com/pdf/2013_4(2)/[95].pdf.
Verma A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac. J. Trop. Biomed. 2012;3:1735–1737. doi: 10.1016/S2221-1691(12)60486-9. DOI
Stawoska I., Tejchman W., Mazuryk O., Lyčka A., Nowak-Sliwinska P., Żesławska E., Nitek W., Kania A. Spectral Characteristic and Preliminary Anticancer Activity in vitro of Selected Rhodanine-3-carboxylic Acids Derivatives. J. Heterocycl. Chem. 2017;54:2889–2897. doi: 10.1002/jhet.2897. DOI
Beno B.R., Yeung K.S., Bartberger M.D., Pennington L.D., Meanwell N.A. A survey of the role of noncovalent sulfur interactions in drug design. J. Med. Chem. 2015;58:4383–4438. doi: 10.1021/jm501853m. PubMed DOI
Popelier P. Atoms in Molecules. An Introduction. Pearson Education Limited; Harlow, UK: 2000.
Esswein A., Schaefer W., Tsaklakidis C., Honold K., Kaluza K. Rhodanine Carboxylic Acid Derivatives for the Treatment and Prevention of Metabolic Bone Disorders. Patent WO 00/18747. 2000 April 6;
Dolezel J., Hirsova P., Opletalova V., Dohnal J., Vejsova M., Kunes J., Jampilek J. Rhodeanineacetic acid derivatives as potential drugs: Preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules. 2009;14:4197–4212. doi: 10.3390/molecules14104197. PubMed DOI PMC
Zvarec O., Polyak S.W., Tieu W., Kuan K., Dai H., Pedersen D.S., Morona R., Zhang L., Booker G.W., Abell A.D. 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione based antibacterials. Bioorg. Med. Chem. Lett. 2012;22:2720–2722. doi: 10.1016/j.bmcl.2012.02.100. PubMed DOI
Kratky M., Vinsova J., Stolarikova J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017;25:1839–1845. doi: 10.1016/j.bmc.2017.01.045. PubMed DOI
Hawrył H.M., Świeboda R.S., Gawroński M.S., Wójciak-Kosior M.A., Popiołek Ł.P., Kocjan R.B. Determination of lipophilicity of some new 1,2,3-triazole derivatives by RP-HPLC and RP-TLC and calculated methods. Curr. Chem. Lett. 2015;4:101–110. doi: 10.5267/j.ccl.2015.4.002. DOI
Sortino M., Delgado P., Juarez S., Quiroga J., Abonia R., Insuasty B., Nogueras M., Rodero L., Garibotto F.M., Enriz R.D., et al. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem. 2007;15:484–494. doi: 10.1016/j.bmc.2006.09.038. PubMed DOI
Chowdhry M.M., Mingos D.M.P., White A.J.P., Williams D.J. Syntheses and characterization of 5-substituted hydantoins and thiazolines-implications for crystal engineering of hydrogen bonded assemblies. Crystal structures of 5-(2-pyridylmethylene)-hydantoin, 5-(2-pyridylmethylene)-2-thiohydantoin, 5-(2-pyridyl-methylene)thiazolidine-2,4-dione, 5-(2-pyridylmethylene)rhodanine and 5-(2-pyridylmethylene)pseudothiohydantoin. J. Chem. Soc. Perkin Trans. 2000;1:3495–3504. doi: 10.1039/B004312P. DOI
Chowdhry M.M., Burrows A.D., Mingos D.M.P., White A.J.P., Williams D.J. Synthesis and crystal structure of 5-(2-pyridylmethylene)hydantoin(Hpyhy) and complexes of pyhy with nickel(II) and copper(II) J. Chem. Soc. Chem. Commun. 1995;15:1521–1522. doi: 10.1039/c39950001521. DOI
Yusof E.N.M., Ravoof T.B.S.A., Tiekink E.R.T., Veerakumarasivam A., Crouse K.A., Tahir M.I.M., Ahmad H. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands. Int. J. Mol. Sci. 2015;26:11034–11054. doi: 10.3390/ijms160511034. PubMed DOI PMC
Islam M.H., Sheikh M.C., Islam M.A.A.A.A. Studies on coordination chemistry and antibacterial activity of bidentate NS Schiff base derived from SBDTC and 4-benzyloxybenzaldehyde. J. Sci. Res. 2019;11:121–132. doi: 10.3329/jsr.v11i1.37863. DOI
Virtual Computational Chemistry Laboratory. [(accessed on 7 December 2020)]. Available online: http://www.vcclab.org/lab/alogps/
Organic Chemistry Portal. [(accessed on 7 December 2020)]. Available online: https://www.organic-chemistry.org/prog/peo/
XLOGP. [(accessed on 7 December 2020)]. Available online: https://www.ics.uci.edu/~dock/manuals/xlogp2.1/
XLOGP3. [(accessed on 7 December 2020)]. Available online: http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/xlogp3/
Acd/Labs. [(accessed on 7 December 2020)]. Available online: https://www.acdlabs.com/
Sheldrick G.M. A short history of SHELX. Acta Cryst. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Sheldrick G.M. Crystal structure refinement with SHELX. Acta Cryst. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst. 2006;39:453–457. doi: 10.1107/S002188980600731X. DOI
Koch W., Holthausen M.C. A Chemist’s Guide to Density Functional Theory. WILEY-VCH Verlag GmbH; Weinheim, Germany: 2000.
Yanai T., Tew D., Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
McLean A.D., Chandler G.S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980;72:5639–5648. doi: 10.1063/1.438980. DOI
Francl M.M., Pietro W.J., Hehre Binkley J.S., DeFrees D.J., Pople J.A., Gordon M.S. Self-Consistent Molecular Orbital Methods. XXIII. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI
Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.V.R. Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F. J. Comput. Chem. 1983;4:294–301. doi: 10.1002/jcc.540040303. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Gaussian Inc.; Wallingford, UK: 2013.
Bader R.W.F. Atoms in Molecules: A Quantum Theory. Clarendon Press; Oxford, UK: 1990.
Murray J.S. Molecular Electrostatic Potentials: Concepts and Applications. Elsevier Science, B.V.; Amsterdam, The Netherlands: 1996.
Keith T.A. AIMAll. TK Gristmill Software; Overland Park, KA, USA: 2011. Version 11.10.16.
Wiberg K.B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 1968;24:1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI
Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Mukaka M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012;24:69–71. PubMed PMC