Synthesis, Crystal Structures, Lipophilic Properties and Antimicrobial Activity of 5-Pyridylmethylidene-3-rhodanine-carboxyalkyl Acids Derivatives

. 2022 Jun 21 ; 27 (13) : . [epub] 20220621

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35807224

Grantová podpora
BN.610-147/PBU/2020 Pedagogical University of Krakow
16.16.160.557 The mass spectrometry analyses were partially supported by the subsidy of Polish Ministry of Science and Education to Piotr Suder

The constant increase in the resistance of pathogenic bacteria to the commonly used drugs so far makes it necessary to search for new substances with antibacterial activity. Taking up this challenge, we obtained a series of rhodanine-3-carboxyalkyl acid derivatives containing 2- or 3- or 4-pyridinyl moiety at the C-5 position. These compounds were tested for their antibacterial and antifungal activities. They showed activity against Gram-positive bacteria while they were inactive against Gram-negative bacteria and yeast. In order to explain the relationship between the activity of the compounds and their structure, for selected derivatives crystal structures were determined using the X-ray diffraction method. Modeling of the isosurface of electron density was also performed. For all tested compounds their lipophilicity was determined by the RP-TLC method and by calculation methods. On the basis of the carried-out research, it was found that the derivatives with 1.5 N···S electrostatics interactions between the nitrogen atom in the pyridine moiety and the sulfur atom in the rhodanine system showed the highest biological activity.

Zobrazit více v PubMed

Nencki M. Ueber die Einwirkung der Monochloressigsäure auf Sulfocyansäure und ihre Salze. J. Prakt. Chem. 1877;16:1–17. doi: 10.1002/prac.18770160101. DOI

Kaminsky D., Kryshchyshyn A., Lesyk R. 5-ene-4-thiazolidinones—An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017;40:542–594. doi: 10.1016/j.ejmech.2017.09.031. PubMed DOI PMC

Mousavi S.M., Zarei M., Hashemi S.A., Babapoor A., Amani A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019;47:1132–1148. doi: 10.1080/21691401.2019.1573824. PubMed DOI

Liu J., Wu Y., Piao H., Zhao X., Zhang W., Wang Y., Liu M. A Comprehensive Review on the Biological and Pharmacological Activities of Rhodanine Based Compounds for Research and Development of Drugs. Mini Rev. Med. Chem. 2018;18:948–961. doi: 10.2174/1389557516666160928162724. PubMed DOI

Tarahomi M., Baharfar R., Mohseni M. Synthesis and antibacterial activity evaluation of novel rhodamine based amide derivatives. Clin. Microbiol. Infect. Dis. 2019;4:1–5. doi: 10.15761/CMID.1000157. DOI

Song M.X., Zheng C.J., Deng X.Q., Wei Z.Y., Piao H.R. The synthesis and antibacterial activities of N-carboxymethyl rhodanines. Med. Chem. 2014;4:441–448. doi: 10.4172/2161-0444.1000177. DOI

Kapoor A., Khare N. Antibacterial and antifungal evaluation of Mannich bases of 2,4-thiazolidinedione and rhodanine. Der. Pharm. Lett. 2016;8:143–148.

Shelke R.N., Pansare D.N., Dake S.A., Pawar R.P., Bembalker S.R. Synthesis of new substituted thiazolidine-4-one analogues with anticancer and antimicrobial activity. Acta Chim. Pharm. Indica. 2017;7:119–131.

Kaminskyy D.V. Screening of the antiviral activity in the range of C5 and N3 substituted 4-thiazolidinone derivatives. J. Org. Pharm. Chem. 2015;13:64–69. doi: 10.24959/ophcj.15.819. DOI

Tintori C., Iovenitti G., Ceresola E.R., Ferrarese R., Zamperini C., Brai A., Poli G., Dreassi E., Cagno V., Lembo D., et al. Rhodanine derivatives as potent anti-HIV and antiHSV microbicides. PLoS ONE. 2018;13:e0198478. doi: 10.1371/journal.pone.0198478. PubMed DOI PMC

Dofe V.S., Sarkate A.P., Azad R., Gill C.H. Green synthesis and inhibitory effect of novel quinoline based thiazolidinones on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Res. Chem. Intermed. 2018;44:1149–1160. doi: 10.1007/s11164-017-3157-3. DOI

Pansare D.N., Shelke R.N., Khade M.C., Jadhav V.N., Pawar C.D., Jadhav R.A., Bembalkar S.R. New thiazolone derivatives: Design, synthesis, anticancer and antimicrobial activity. Eur. Chem. Bull. 2019;8:7–14. doi: 10.17628/ecb.2019.8.7-14. DOI

Liang H.X., Yu Y.H., Li X.H., Tang N.F., Hu G.Q., Liu B. Apoptosis of human hepatocellular carcinoma cells SMMC-7721 induced by C-3 methylidene thiazolidinedione acetic acid. Int. J. Clin. Exp. Med. 2019;12:371–377.

Nguyen C.T., Nguyen Q.T., Dao P.H., Nguyen T.L., Nguyen P.T., Nguyen H.H. Synthesis and cytotoxic activity against K562 and MCF7 cell lines of some N-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-((4-oxo-3-phenyl-3,4-dihydroquinazoline-2-yl)thio) acetamide compounds. Hindawi J. Chem. 2019;2019:8. doi: 10.1155/2019/1492316. DOI

Sarkate A.P., Lokwani D.K., Karnik K.S., Shinde D.B. Novel 2-(nitrooxy)ethyl 2-(4-(substituted phenyl)-2-((substituted phenyl)amino)thiazol-5-yl)acetate as Anti-inflammatory, Analgesic and Nitric Oxide Releasing Agents: Synthesis and Molecular Docking Studies. Antiinflamm. Antiallergy Agents Med. Chem. 2017;16:153–167. doi: 10.2174/1871523016666171115125922. PubMed DOI

Tejchman W., Kołodziej P., Kalinowska-Tłuścik J., Nitek W., Żuchowski G., Bogucka-Kocka A., Żesławska E. Discovery of Cinnamylidene Derivative of Rhodanine with High Anthelmintic Activity against Rhabditis sp. Molecules. 2022;27:2155. doi: 10.3390/molecules27072155. PubMed DOI PMC

Sivanadanam J., Mukkamala R., Mandal S., Vedarajan R., Matsumi N., Aidhen I.S., Ramanujam K. Exploring the role of the spacers and acceptors on the triphenylamine-based dyes for dye-sensitized solar cells. Int. J. Hydrog. Energy. 2018;43:4691–4705. doi: 10.1016/j.ijhydene.2017.10.183. DOI

El-sayed S., Metwally K., El-Shanawani A.A., Abdel-Aziz L.M., El-Rashedy A.A., Soliman M.E.S., Quattrini L., Coviello V., Motta C. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. Bioorg. Med. Chem. Lett. 2017;27:4760–4764. doi: 10.1016/j.bmcl.2017.08.050. PubMed DOI

Bacha M.M., Nadeem H., Zaib S., Sarwar S., Imran A., Ur Rahman S., Saqib Ali H., Arif M., Iqbal J. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: Synthesis, biological evaluation, molecular docking and simulation studies. BMC Chem. 2021;15:28. doi: 10.1186/s13065-021-00756-z. PubMed DOI PMC

Radwan A., Elhenawy A.A., Kadh M.S., Hashem F.A., Abd-Elghany R.D. Rhodanine-3-acetic acid derivatives as a new class of potent α-amylase inhibitors. J. Chem. Biol. Phys. Sci. 2020;10:245–249. doi: 10.24214/jcbps.A.10.3.24549. DOI

Abusetta A., Alumairi J., Alkaabi M.Y., Al Ajeil R., Abu Shkaidim A., Akram D., Pajak J., Ghattas M.A., Atatreh N., Al Neyadi S.S. Design, synthesis, in vitro antibacterial activity, and docking studies of new rhodanine derivatives. Open J. Med. Chem. 2020;10:15–34. doi: 10.4236/ojmc.2020.101002. DOI

Chauhan D., Ginson G., Sridhar S.N.C., Bhatia R., Paul A.T., Monga V. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Arch. Pharm. 2019;352:1900029. doi: 10.1002/ardp.201900029. PubMed DOI

Körner H. Über einige Derivate der Dithiocarbamino-essigsäure. Ber. Dtsch. Chem. Ges. 1908;41:1901–1905. doi: 10.1002/cber.19080410265. DOI

Reddy T.N., Ravinder M., Bagul P., Ravikanti K., Bagul C., Nanubolu J.B., Srinivas K., Banerjee S.K., Rao V.J. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs) Eur. J. Med. Chem. 2014;71:53–66. doi: 10.1016/j.ejmech.2013.10.043. PubMed DOI

Agrawal Y.P., Agrawal M.Y., Gupta A.K. Design, synthesis and evaluation of rhodanine derivatives as aldose reductase inhibitors. Chem. Biol. Drug Des. 2015;85:172–180. doi: 10.1111/cbdd.12369. PubMed DOI

Pandey J., Gilhotra R., Gupta A.K. Design, synthesis and evaluation of substituted 5-(2-methoxybenzylidene)-rhodanine ester analogs as aldose reductase inhibitors. Biol. Forum. 2019;11:217–221.

Tejchman W., Korona-Glowniak I., Malm A., Zylewski M., Suder P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res. 2017;26:1316–1324. doi: 10.1007/s00044-017-1852-7. PubMed DOI PMC

Tejchman W., Korona-Glowniak I., Kwietniewski L., Żesławska E., Nitek W., Suder P., Żylewski M., Malm A. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II. Saudi Pharm. J. 2020;28:414–426. doi: 10.1016/j.jsps.2020.02.002. PubMed DOI PMC

Tejchman W., Skórska—Stania A., Żesławska E. The crystal structures of three rhodanine-3-carboxylic acids. J. Chem. Crystallogr. 2016;46:181–187. doi: 10.1007/s10870-016-0644-0. DOI

Żesławska E., Nitek W., Tejchman W. The synthesis and crystal structures of the homologues of epalrestat. J. Chem. Crystallogr. 2015;45:151–157. doi: 10.1007/s10870-015-0577-z. DOI

Bate-Smith E.C., Westall R.G. Chromatographic behaviour and chemical structure I. Some naturally occurring phenolic substances. Biochim. Biophys. Acta. 1950;4:427–440. doi: 10.1016/0006-3002(50)90049-7. DOI

Soczewiński E., Wachtmeister C.A. The relation between the composition of certain ternary two-phase solvent systems and RM values. J. Chromatogr. A. 1962;7:311–325. doi: 10.1016/S0021-9673(01)86422-0. DOI

Gocan S. Encyclopedia of Chromatography. 3rd ed. Taylor & Francis; New York, NY, USA: 2010. Eluotropic series of solvent for TLC; p. 730.

Snyder L.R. Classification off the solvent properties of common liquids. J. Chromatogr. Sci. 1978;16:223–234. doi: 10.1093/chromsci/16.6.223. DOI

Karger B.L., Snyder L.R., Econ C. An expanded solubility parameter treatment for classification and use of chromatographic solvents and adsorbents: Parameters for dispersion, dipole and hydrogen bonding interactions. J. Chromatogr. A. 1976;125:71–88. doi: 10.1016/S0021-9673(00)93812-3. DOI

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Molinspiration Cheminformatics. [(accessed on 7 December 2020)]. Available online: http://www.molinspiration.com.

Singh S., Gupta A.K., Verma A. Molecular Properties and Bioactivity Score of the Aloe Vera Antioxidant Compounds—In Order to Lead Finding. [(accessed on 20 November 2020)];Res. J. Pharm. Biol. Chem. Sci. 2013 4:876–881. Available online: http://rjpbcs.com/pdf/2013_4(2)/[95].pdf.

Verma A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac. J. Trop. Biomed. 2012;3:1735–1737. doi: 10.1016/S2221-1691(12)60486-9. DOI

Stawoska I., Tejchman W., Mazuryk O., Lyčka A., Nowak-Sliwinska P., Żesławska E., Nitek W., Kania A. Spectral Characteristic and Preliminary Anticancer Activity in vitro of Selected Rhodanine-3-carboxylic Acids Derivatives. J. Heterocycl. Chem. 2017;54:2889–2897. doi: 10.1002/jhet.2897. DOI

Beno B.R., Yeung K.S., Bartberger M.D., Pennington L.D., Meanwell N.A. A survey of the role of noncovalent sulfur interactions in drug design. J. Med. Chem. 2015;58:4383–4438. doi: 10.1021/jm501853m. PubMed DOI

Popelier P. Atoms in Molecules. An Introduction. Pearson Education Limited; Harlow, UK: 2000.

Esswein A., Schaefer W., Tsaklakidis C., Honold K., Kaluza K. Rhodanine Carboxylic Acid Derivatives for the Treatment and Prevention of Metabolic Bone Disorders. Patent WO 00/18747. 2000 April 6;

Dolezel J., Hirsova P., Opletalova V., Dohnal J., Vejsova M., Kunes J., Jampilek J. Rhodeanineacetic acid derivatives as potential drugs: Preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules. 2009;14:4197–4212. doi: 10.3390/molecules14104197. PubMed DOI PMC

Zvarec O., Polyak S.W., Tieu W., Kuan K., Dai H., Pedersen D.S., Morona R., Zhang L., Booker G.W., Abell A.D. 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione based antibacterials. Bioorg. Med. Chem. Lett. 2012;22:2720–2722. doi: 10.1016/j.bmcl.2012.02.100. PubMed DOI

Kratky M., Vinsova J., Stolarikova J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017;25:1839–1845. doi: 10.1016/j.bmc.2017.01.045. PubMed DOI

Hawrył H.M., Świeboda R.S., Gawroński M.S., Wójciak-Kosior M.A., Popiołek Ł.P., Kocjan R.B. Determination of lipophilicity of some new 1,2,3-triazole derivatives by RP-HPLC and RP-TLC and calculated methods. Curr. Chem. Lett. 2015;4:101–110. doi: 10.5267/j.ccl.2015.4.002. DOI

Sortino M., Delgado P., Juarez S., Quiroga J., Abonia R., Insuasty B., Nogueras M., Rodero L., Garibotto F.M., Enriz R.D., et al. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem. 2007;15:484–494. doi: 10.1016/j.bmc.2006.09.038. PubMed DOI

Chowdhry M.M., Mingos D.M.P., White A.J.P., Williams D.J. Syntheses and characterization of 5-substituted hydantoins and thiazolines-implications for crystal engineering of hydrogen bonded assemblies. Crystal structures of 5-(2-pyridylmethylene)-hydantoin, 5-(2-pyridylmethylene)-2-thiohydantoin, 5-(2-pyridyl-methylene)thiazolidine-2,4-dione, 5-(2-pyridylmethylene)rhodanine and 5-(2-pyridylmethylene)pseudothiohydantoin. J. Chem. Soc. Perkin Trans. 2000;1:3495–3504. doi: 10.1039/B004312P. DOI

Chowdhry M.M., Burrows A.D., Mingos D.M.P., White A.J.P., Williams D.J. Synthesis and crystal structure of 5-(2-pyridylmethylene)hydantoin(Hpyhy) and complexes of pyhy with nickel(II) and copper(II) J. Chem. Soc. Chem. Commun. 1995;15:1521–1522. doi: 10.1039/c39950001521. DOI

Yusof E.N.M., Ravoof T.B.S.A., Tiekink E.R.T., Veerakumarasivam A., Crouse K.A., Tahir M.I.M., Ahmad H. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands. Int. J. Mol. Sci. 2015;26:11034–11054. doi: 10.3390/ijms160511034. PubMed DOI PMC

Islam M.H., Sheikh M.C., Islam M.A.A.A.A. Studies on coordination chemistry and antibacterial activity of bidentate NS Schiff base derived from SBDTC and 4-benzyloxybenzaldehyde. J. Sci. Res. 2019;11:121–132. doi: 10.3329/jsr.v11i1.37863. DOI

Virtual Computational Chemistry Laboratory. [(accessed on 7 December 2020)]. Available online: http://www.vcclab.org/lab/alogps/

Organic Chemistry Portal. [(accessed on 7 December 2020)]. Available online: https://www.organic-chemistry.org/prog/peo/

XLOGP. [(accessed on 7 December 2020)]. Available online: https://www.ics.uci.edu/~dock/manuals/xlogp2.1/

XLOGP3. [(accessed on 7 December 2020)]. Available online: http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/xlogp3/

Acd/Labs. [(accessed on 7 December 2020)]. Available online: https://www.acdlabs.com/

Sheldrick G.M. A short history of SHELX. Acta Cryst. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Sheldrick G.M. Crystal structure refinement with SHELX. Acta Cryst. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst. 2006;39:453–457. doi: 10.1107/S002188980600731X. DOI

Koch W., Holthausen M.C. A Chemist’s Guide to Density Functional Theory. WILEY-VCH Verlag GmbH; Weinheim, Germany: 2000.

Yanai T., Tew D., Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

McLean A.D., Chandler G.S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980;72:5639–5648. doi: 10.1063/1.438980. DOI

Francl M.M., Pietro W.J., Hehre Binkley J.S., DeFrees D.J., Pople J.A., Gordon M.S. Self-Consistent Molecular Orbital Methods. XXIII. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI

Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.V.R. Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F. J. Comput. Chem. 1983;4:294–301. doi: 10.1002/jcc.540040303. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Gaussian Inc.; Wallingford, UK: 2013.

Bader R.W.F. Atoms in Molecules: A Quantum Theory. Clarendon Press; Oxford, UK: 1990.

Murray J.S. Molecular Electrostatic Potentials: Concepts and Applications. Elsevier Science, B.V.; Amsterdam, The Netherlands: 1996.

Keith T.A. AIMAll. TK Gristmill Software; Overland Park, KA, USA: 2011. Version 11.10.16.

Wiberg K.B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 1968;24:1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI

Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Mukaka M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012;24:69–71. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...