Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35808019
PubMed Central
PMC9268453
DOI
10.3390/nano12132183
PII: nano12132183
Knihovny.cz E-zdroje
- Klíčová slova
- A. multifolium, A. scholaris, E. coli, L. indica, S. aureus, antimicrobial activity, nanoparticles, plant extracts, tropical plant,
- Publikační typ
- časopisecké články MeSH
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 CZ 25250 Vestec Czech Republic
Council for Nutritional and Environmental Medicine Toften 24 8610 Mo i Rana Norway
School of Pharmacy and Life Sciences Robert Gordon University Garthdee Road Aberdeen AB10 7QB UK
Zobrazit více v PubMed
Chauhan A., Ghigo J.-M., Beloin C. Study of in vivo catheter biofilm infections using pediatric central venous catheter implanted in rat. Nat. Prot. 2016;11:525–541. doi: 10.1038/nprot.2016.033. PubMed DOI
Do T., Schaefer K., Santiago A., Coe K., Fernandes P., Kahne D., Pinho M., Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat. Microbiol. 2020;5:1–13. doi: 10.1038/s41564-019-0632-1. PubMed DOI PMC
Subramanian S., Huiszoon R.C., Chu S., Bentley W.E., Ghodssi R. Microsystems for Biofilm Characterization and Sensing–A Review. Biofilm. 2019;2:100015. doi: 10.1016/j.bioflm.2019.100015. PubMed DOI PMC
Libertucci J., Young V.B. The role of the microbiota in infectious diseases. Nat. Microbiol. 2019;4:35–45. doi: 10.1038/s41564-018-0278-4. PubMed DOI
Yanez-Macias R., Munoz-Bonilla A., De Jesus-Tellez M.A., Maldonado-Textle H., Guerrero-Sanchez C., Schubert U.S., Guerrero-Santos R. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers. 2019;11:1789. doi: 10.3390/polym11111789. PubMed DOI PMC
Kumar A., Vemula P.K., Ajayan P.M., John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008;7:236–241. doi: 10.1038/nmat2099. PubMed DOI
Tanwar J., Sharma M., Parmar A., Tehri N., Verma N., Gahlaut A., Hooda V. Antibacterial potential of silver nanoparticles against multidrug resistant bacterial isolates from blood cultures. Inorg. Nano-Metal. Chem. 2020;50:1150–1156. doi: 10.1080/24701556.2020.1735433. DOI
Mohamed D.S., Abd El-Baky R.M., Sandle T., Mandour S.A., Ahmed E.F. Antimicrobial Activity of Silver-Treated Bacteria against other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics. 2020;9:181. doi: 10.3390/antibiotics9040181. PubMed DOI PMC
Paladini F., De Simone S., Sannino A., Pollini M. Antibacterial and antifungal dressings obtained by photochemical deposition of silver nanoparticles. J. Appl. Polym. Sci. 2014;131:40326. doi: 10.1002/app.40326. DOI
Paladini F., Di Franco C., Panico A., Scamarcio G., Sannino A., Pollini M. In vitro assessment of the antibacterial potential of silver nano-coatings on cotton gauzes for prevention of wound infections. Materials. 2016;9:411. doi: 10.3390/ma9060411. PubMed DOI PMC
Paladini F., Meikle S., Cooper I., Lacey J., Perugini V., Santin M. Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials. J. Mater. Sci. Mater. Med. 2013;24:2461–2472. doi: 10.1007/s10856-013-4986-2. PubMed DOI
Paladini F., Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials. 2019;12:2540. doi: 10.3390/ma12162540. PubMed DOI PMC
Parveen A., Kulkarni N., Yalagatti M., Abbaraju V., Deshpande R. In vivo efficacy of biocompatible silver nanoparticles cream for empirical wound healing. J. Tiss. Viab. 2018;27:257–261. doi: 10.1016/j.jtv.2018.08.007. PubMed DOI
Krishnan P.D., Banas D., Durai R.D., Kabanov D., Hosnedlova B., Kepinska M., Fernandez C., Ruttkay-Nedecky B., Nguyen H.V., Farid A., et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics. 2020;12:821. doi: 10.3390/pharmaceutics12090821. PubMed DOI PMC
Ikuma K., Decho A.W., Lau B.L.T. When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol. 2015;6 doi: 10.3389/fmicb.2015.00591. PubMed DOI PMC
Lima R., Del Fiol F.S., Balcão V.M. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.00692. PubMed DOI PMC
Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Fut. Med. Chem. 2015;7:493–512. doi: 10.4155/fmc.15.6. PubMed DOI
Rumbaugh K.P., Sauer K. Biofilm dispersion. Nat. Rev. Microbiol. 2020;18:571–586. doi: 10.1038/s41579-020-0385-0. PubMed DOI PMC
Singh P., Pandit S., Garnaes J., Tunjic S., Mokkapati V., Sultan A., Thygesen A., Mackevica A., Mateiu R.V., Daugaard A.E., et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 2018;13:3571–3591. doi: 10.2147/IJN.S157958. PubMed DOI PMC
Thuptimdang P., Limpiyakorn T., Khan E. Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. Chemosphere. 2017;188:199–207. doi: 10.1016/j.chemosphere.2017.08.147. PubMed DOI
Guo J., Qin S., Wei Y., Liu S., Peng H., Li Q., Luo L., Lv M. Silver nanoparticles exert concentration-dependent influences on biofilm development and architecture. Cell Prolifer. 2019;52:e12616. doi: 10.1111/cpr.12616. PubMed DOI PMC
Markowska K., Grudniak A.M., Wolska K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol. 2013;60:523–530. doi: 10.18388/abp.2013_2016. PubMed DOI
Siddiqi K.S., Husen A., Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018;16:14. doi: 10.1186/s12951-018-0334-5. PubMed DOI PMC
Barker L.K., Giska J.R., Radniecki T.S., Semprini L. Effects of short- and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. Chemosphere. 2018;206:606–614. doi: 10.1016/j.chemosphere.2018.05.017. PubMed DOI
Grun A.Y., Meier J., Metreveli G., Schaumann G.E., Manz W. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms. Environ. Sci. Pollut. Res. Int. 2016;23:24277–24288. doi: 10.1007/s11356-016-7691-0. PubMed DOI
Hobley L., Harkins C., MacPhee C.E., Stanley-Wall N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39:649–669. doi: 10.1093/femsre/fuv015. PubMed DOI PMC
Tăbăran A.-F., Matea C.T., Mocan T., Tăbăran A., Mihaiu M., Iancu C., Mocan L. Silver Nanoparticles for the Therapy of Tuberculosis. Int. J. Nanomed. 2020;15:2231. doi: 10.2147/IJN.S241183. PubMed DOI PMC
Kreytsberg G., Gracheva I., Kibrik B., Golikov I. Antituberculous effect of silver nanoparticles. J. Phys. Conf. Ser. 2011;291:012030. doi: 10.1088/1742-6596/291/1/012030. DOI
Song B., Zhang C., Zeng G., Gong J., Chang Y., Jiang Y. Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Arch. Biochem. Biophys. 2016;604:167–176. doi: 10.1016/j.abb.2016.04.018. PubMed DOI
Liu C., Guo J., Yan X., Tang Y., Mazumder A., Wu S., Liang Y. Antimicrobial nanomaterials against biofilms: An alternative strategy. Environ. Rev. 2017;25:225–244. doi: 10.1139/er-2016-0046. DOI
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Kumar D.A., Palanichamy V., Roopan S.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta Mol. Biomol. Spectr. 2014;127:168–171. doi: 10.1016/j.saa.2014.02.058. PubMed DOI
Jain J., Arora S., Rajwade J.M., Omray P., Khandelwal S., Paknikar K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm. 2009;6:1388–1401. doi: 10.1021/mp900056g. PubMed DOI
Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC
Le Ouay B., Stellacci F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today. 2015;10:339–354. doi: 10.1016/j.nantod.2015.04.002. DOI
Huh A.J., Kwon Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Rel. 2011;156:128–145. doi: 10.1016/j.jconrel.2011.07.002. PubMed DOI
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Al-Sharqi A., Apun K., Vincent M., Kanakaraju D., Bilung L.M. Enhancement of the antibacterial efficiency of silver nanoparticles against gram-positive and gram-negative bacteria using blue laser light. Int. J. Photoenergy. 2019;2019:1–12. doi: 10.1155/2019/2528490. DOI
Mai-Prochnow A., Clauson M., Hong J., Murphy A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep38610. PubMed DOI PMC
Velayati A.A., Farnia P., Ibrahim T.A., Haroun R.Z., Kuan H.O., Ghanavi J., Farnia P., Kabarei A.N., Tabarsi P., Omar A.R. Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: Using transmission electron microscopy. Chemotherapy. 2009;55:303–307. doi: 10.1159/000226425. PubMed DOI
Wales A.D., Davies R.H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics. 2015;4:567–604. PubMed PMC
Richter A.P., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Hubal E.A.C., Paunov V.N., Stoyanov S.D., Velev O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015;10:817. doi: 10.1038/nnano.2015.141. PubMed DOI
Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab. J. Chem. 2019;12:168–180. doi: 10.1016/j.arabjc.2014.11.014. DOI
Nederberg F., Zhang Y., Tan J.P.K., Xu K.J., Wang H.Y., Yang C., Gao S.J., Guo X.D., Fukushima K., Li L.J., et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011;3:409–414. doi: 10.1038/nchem.1012. PubMed DOI
Chudobova D., Dostalova S., Ruttkay-Nedecky B., Guran R., Rodrigo M.A.M., Tmejova K., Krizkova S., Zitka O., Adam V., Kizek R. The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol. Res. 2015;170:147–156. doi: 10.1016/j.micres.2014.08.003. PubMed DOI
Karamian R., Kamalnejad J. Green Synthesis of Silver Nanoparticles Using Cuminum cyminum Leaf Extract and Evaluation of Their Biological Activities. J. Nanostruct. 2019;9:74–85. doi: 10.22052/jns.2019.01.008. DOI
Ruddaraju L.K., Pallela P., Pammi S.V.N., Padavala V.S., Kolapalli V.R.M. Synergetic antibacterial and anticarcinogenic effects of Annona squamosa leaf extract mediated silver nano particles. Mater. Sci. Semicond. Process. 2019;100:301–309. doi: 10.1016/j.mssp.2019.05.007. DOI
Yang E.J., Lee J.S., Song B.B., Yun C.Y., Kim D.H., Kim I.S. Anti-inflammatory effects of ethanolic extract from Lagerstroemia indica on airway inflammation in mice. J. Ethnopharmacol. 2011;136:422–427. doi: 10.1016/j.jep.2010.05.066. PubMed DOI
Wang C.M., Yeh K.L., Tsai S.J., Jhan Y.L., Chou C.H. Anti-Proliferative Activity of Triterpenoids and Sterols Isolated from Alstonia scholaris against Non-Small-Cell Lung Carcinoma Cells. Molecules. 2017;22:2119. doi: 10.3390/molecules22122119. PubMed DOI PMC
Lee I., Youn U., Kim H., Min B., Kim J.S., Bae K. Biphenyl and Biphenyl Ether Quinolizidine N-oxide Alkaloids from Lagerstroemia indica L. Planta Med. 2011;77:2037–2041. doi: 10.1055/s-0031-1280064. PubMed DOI
Diab Y., Atalla K., Elbanna K. Antimicrobial screening of some Egyptian plants and active flavones from Lagerstroemia indica leaves. Drug. Discov. Ther. 2012;6:212–217. doi: 10.5582/ddt.2012.v6.4.212. PubMed DOI
Zhao Y.L., Shang J.H., Pu S.B., Wang H.S., Wang B., Liu L., Liu Y.P., Shen H.M., Luo X.D. Effect of total alkaloids from Alstonia scholaris on airway inflammation in rats. J. Ethnopharmacol. 2016;178:258–265. doi: 10.1016/j.jep.2015.12.022. PubMed DOI
Zhao Y.L., Yang Z.F., Shang J.H., Huang W.Y., Wang B., Wei X., Khan A., Yuan Z.W., Liu Y.P., Wang Y.F., et al. Effects of indole alkaloids from leaf of Alstonia scholaris on post-infectious cough in mice. J. Ethnopharmacol. 2018;218:69–75. doi: 10.1016/j.jep.2018.02.040. PubMed DOI PMC
Khyade M.S., Kasote D.M., Vaikos N.P. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2014;153:1–18. doi: 10.1016/j.jep.2014.01.025. PubMed DOI
Wang S., Wang P., Gao L., Yang R., Li L., Zhang E., Wang Q., Li Y., Yin Z. Characterization and Complementation of a Chlorophyll-Less Dominant Mutant GL1 in Lagerstroemia indica. DNA Cell. Biol. 2017;36:354–366. doi: 10.1089/dna.2016.3573. PubMed DOI PMC
Zhao Y.L., Cao J., Shang J.H., Liu Y.P., Khan A., Wang H.S., Qian Y., Liu L., Ye M., Luo X.D. Airways antiallergic effect and pharmacokinetics of alkaloids from Alstonia scholaris. Phytomed. 2017;27:63–72. doi: 10.1016/j.phymed.2017.02.002. PubMed DOI
Bello I., Usman N.S., Mahmud R., Asmawi M.Z. Mechanisms underlying the antihypertensive effect of Alstonia scholaris. J. Ethnopharmacol. 2015;175:422–431. doi: 10.1016/j.jep.2015.09.031. PubMed DOI
Chee C.F., Lee H.B., Ong H.C., Ho A.S. Photocytotoxic pheophorbide-related compounds from Aglaonema simplex. Chem. Biodivers. 2005;2:1648–1655. doi: 10.1002/cbdv.200590134. PubMed DOI
Oge R. Chinese evergreen plant (Aglaonema) poisoning in a child presenting to an urban hospital in Papua New Guinea. Emerg. Med. Australas. 2019;31:491–492. doi: 10.1111/1742-6723.13279. PubMed DOI
Petrlova J., Potesil D., Mikelova R., Blastik O., Adam V., Trnkova L., Jelen F., Prusa R., Kukacka J., Kizek R. Attomole voltammetric determination of metallothionein. Electrochim. Acta. 2006;51:5112–5119. doi: 10.1016/j.electacta.2006.03.078. DOI
Parejo I., Codina C., Petrakis C., Kefalas P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH* (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Method. 2000;44:507–512. doi: 10.1016/S1056-8719(01)00110-1. PubMed DOI
Gulcin I., Bursal E., Sehitoglu M.H., Bilsel M., Goren A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food. Chem. Toxicol. 2010;48:2227–2238. doi: 10.1016/j.fct.2010.05.053. PubMed DOI
Ou B., Huang D., Hampsch-Woodill M., Flanagan J.A., Deemer E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food. Chem. 2002;50:3122–3128. doi: 10.1021/jf0116606. PubMed DOI
Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC
Zoufan P., Azad Z., Rahnama A., Kolahi M. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium. Ecotoxicol. Environ. Saf. 2020;187:109811. doi: 10.1016/j.ecoenv.2019.109811. PubMed DOI
Slimestad R., Fossen T., Brede C. Flavonoids and other phenolics in herbs commonly used in Norwegian commercial kitchens. Food Chem. 2020;309:8. doi: 10.1016/j.foodchem.2019.125678. PubMed DOI
Testing E.C.o.A.S. Antimicrobial susceptibility testing EUCAST disk diffusion method. [(accessed on 30 November 2020)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Manual_v_8.0_EUCAST_Disk_Test_2020.pdf.
O’Toole G.A. Microtiter Dish Biofilm Formation Assay. Jove-J. Vis. Exp. 2011;2437 doi: 10.3791/2437. PubMed DOI PMC
Schon T., Werngren J., Machado D., Borroni E., Wijkander M., Lina G., Mouton J., Matuschek E., Kahlmeter G., Giske C., et al. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates - the EUCAST broth microdilution reference method for MIC determination. Clin. Microb. Infect. 2020;26:1488–1492. doi: 10.1016/j.cmi.2020.07.036. PubMed DOI
Hubaux A., Vos G. Decision and detection limits for calibration curves. J. Anal. Chem. 1970;42:849–855. doi: 10.1021/ac60290a013. DOI
Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Liu Y., Sun Y., Huang G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol. 2018;111:780–786. doi: 10.1016/j.ijbiomac.2018.01.086. PubMed DOI
Rodríguez-Sánchez S., Martín-Ortiz A., Carrero-Carralero C., Ramos S., Sanz M.L., Soria A.C. Pressurized liquid extraction of Aglaonema sp. iminosugars: Chemical composition, bioactivity, cell viability and thermal stability. Food Chem. 2016;204:62–69. doi: 10.1016/j.foodchem.2016.02.091. PubMed DOI
Gupta K., Hazarika S.N., Saikia D., Namsa N.D., Mandal M. One step green synthesis and anti-microbial and anti-biofilm properties of Psidium guajava L. leaf extract-mediated silver nanoparticles. Mater. Let. 2014;125:67–70. doi: 10.1016/j.matlet.2014.03.134. DOI
Bharathi D., Vasantharaj S., Bhuvaneshwari V. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Mater. Res. Express. 2018;5:055404. doi: 10.1088/2053-1591/aac2ef. DOI
Singh D., Rathod V., Ninganagouda S., Hiremath J., Singh A.K., Mathew J. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 2014;2014:1–8. doi: 10.1155/2014/408021. PubMed DOI PMC
Ninganagouda S., Rathod V., Jyoti H., Singh D., Prema K., Haq M.U. Extracellular biosynthesis of silver nanoparticles using Aspergillus flavus and their antimicrobial activity against gram negative MDR strains. Int. J. Pharm. Bio Sci. 2013;4:222–229.
Qayyum S., Oves M., Khan A.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE. 2017;12:e0181363. doi: 10.1371/journal.pone.0181363. PubMed DOI PMC
Barabadi H., Mojab F., Vahidi H., Marashi B., Talank N., Hosseini O., Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg. Chem. Commun. 2021;129 doi: 10.1016/j.inoche.2021.108647. DOI
Pinto R.M., Lopes-de-Campos D., Martins M.C.L., Van Dijck P., Nunes C., Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019;43:622–641. doi: 10.1093/femsre/fuz021. PubMed DOI PMC
Lozovskis P., Jankauskaite V., Guobiene A., Kareiviene V., Vitkauskiene A. Effect of Graphene Oxide and Silver Nanoparticles Hybrid Composite on P. aeruginosa Strains with Acquired Resistance Genes. Int. J. Nanomed. 2020;15:5147–5163. doi: 10.2147/IJN.S235748. PubMed DOI PMC
Salunke G.R., Ghosh S., Santosh Kumar R.J., Khade S., Vashisth P., Kale T., Chopade S., Pruthi V., Kundu G., Bellare J.R., et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int. J. Nanomed. 2014;9:2635–2653. doi: 10.2147/IJN.S59834. PubMed DOI PMC
Hashimoto M., Honda Y. Effect of Silver Nanoparticle Size on Biofilm Formation. JBT. 2019;9:450–455. doi: 10.1166/jbt.2019.2002. DOI
Supraja N., Prasad T., Gandhi A.D., Anbumani D., Kavitha P., Babujanarthanam R. Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochem. Biophys. Rep. 2018;14:69–77. doi: 10.1016/j.bbrep.2018.04.004. PubMed DOI PMC
Abinaya M., Gayathri M. Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Bioorg. Chem. 2019;87:291–301. doi: 10.1016/j.bioorg.2019.03.050. PubMed DOI
Kriswandini I.L., Diyatri I., Nuraini P., Berniyanti T., Putri I.A., Tyas P. The forming of bacteria biofilm from Streptococcus mutans and Aggregatibacter actino-mycetemcomitans as a marker for early detection in dental caries and periodontitis. Infect. Dis. Rep. 2020;12:26–28. doi: 10.4081/idr.2020.8722. PubMed DOI PMC
Xiao J., Zuo Y.L., Liu Y., Li J.Y., Hao Y.Q., Zhou X.D. Effects of Nidus Vespae extract and chemical fractions on glucosyltransferases, adherence and biofilm formation of Streptococcus mutans. Arch. Oral Biol. 2007;52:869–875. doi: 10.1016/j.archoralbio.2007.02.009. PubMed DOI
Strouhal M., Kizek R., Vacek J., Trnkova L., Nemec M. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry. 2003;60:29–36. doi: 10.1016/S1567-5394(03)00043-4. PubMed DOI