Multitier mechanics control stromal adaptations in the swelling lymph node
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35817845
PubMed Central
PMC9355878
DOI
10.1038/s41590-022-01257-4
PII: 10.1038/s41590-022-01257-4
Knihovny.cz E-zdroje
- MeSH
- buňky stromatu * MeSH
- fibroblasty MeSH
- lymfatické uzliny * MeSH
- lymfocyty MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Dermatology Medical University Vienna Vienna Austria
Department of Immunobiology University of Lausanne Epalinges Switzerland
Department of Oncology Microbiology and Immunology University of Fribourg Fribourg Switzerland
Institute of Immunobiology Kantonsspital St Gallen St Gallen Switzerland
Institute of Science and Technology Austria Klosterneuburg Austria
Zobrazit více v PubMed
Lämmermann T, Sixt M. The microanatomy of T cell responses. Immunol. Rev. 2008;221:26–43. doi: 10.1111/j.1600-065X.2008.00592.x. PubMed DOI
Pham THM, Okada T, Matloubian M, Lo CG, Cyster JG. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity. 2008;28:122–133. doi: 10.1016/j.immuni.2007.11.017. PubMed DOI PMC
Young AJ. The physiology of lymphocyte migration through the single lymph node in vivo. Semin. Immunol. 1999;11:73–83. doi: 10.1006/smim.1999.0163. PubMed DOI
Druzd D, et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity. 2017;46:120–132. doi: 10.1016/j.immuni.2016.12.011. PubMed DOI PMC
Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 2016;213:2567–2574. doi: 10.1084/jem.20160723. PubMed DOI PMC
Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA. 2000;97:12694–12699. doi: 10.1073/pnas.97.23.12694. PubMed DOI PMC
Matloubian M, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–360. doi: 10.1038/nature02284. PubMed DOI
Mionnet C, et al. High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood. 2011;118:6115–6122. doi: 10.1182/blood-2011-07-367409. PubMed DOI PMC
Andrian UHvon, Mempel TR. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 2003;3:867–878. doi: 10.1038/nri1222. PubMed DOI
Link A, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 2007;8:1255–1265. doi: 10.1038/ni1513. PubMed DOI
Knop L, et al. IL‐7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival. Eur. J. Immunol. 2020;50:846–857. doi: 10.1002/eji.201948368. PubMed DOI
Gorelik L, et al. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J. Exp. Med. 2003;198:937–945. doi: 10.1084/jem.20030789. PubMed DOI PMC
Cremasco V, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 2014;15:973–981. doi: 10.1038/ni.2965. PubMed DOI PMC
Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 2014;211:2583–2598. doi: 10.1084/jem.20141132. PubMed DOI PMC
Devi S, et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity. 2021;54:1219–1230. doi: 10.1016/j.immuni.2021.03.025. PubMed DOI
Rodda LB, et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 2018;48:1014–1028. doi: 10.1016/j.immuni.2018.04.006. PubMed DOI PMC
Bajénoff M, et al. Stromal cell networks regulate lymphocyte entry, migration and territoriality in lymph nodes. Immunity. 2006;25:989–1001. doi: 10.1016/j.immuni.2006.10.011. PubMed DOI PMC
Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 2020;21:369–380. doi: 10.1038/s41590-020-0635-3. PubMed DOI
Kaldjian EP, Gretz JE, Anderson AO, Shi Y, Shaw S. Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix. Int. Immunol. 2001;13:1243–1253. doi: 10.1093/intimm/13.10.1243. PubMed DOI
Sixt M, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22:19–29. doi: 10.1016/j.immuni.2004.11.013. PubMed DOI
Yang C-Y, et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl Acad. Sci. USA. 2014;111:E109–E118. PubMed PMC
McConnell I, Hopkins J. Lymphocyte traffic through antigen-stimulated lymph nodes. I. Complement activation within lymph nodes initiates cell shutdown. Immunology. 1981;42:217–223. PubMed PMC
Chyou S, et al. Coordinated regulation of lymph node vascular–stromal growth first by CD11c+ cells and then by T and B cells. J. Immunol. 2011;187:5558–5567. doi: 10.4049/jimmunol.1101724. PubMed DOI PMC
Acton SE, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514:498–502. doi: 10.1038/nature13814. PubMed DOI PMC
Astarita JL, et al. The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 2015;16:75–84. doi: 10.1038/ni.3035. PubMed DOI PMC
Forgacs G, Foty RA, Shafrir Y, Steinberg MS. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 1998;74:2227–2234. doi: 10.1016/S0006-3495(98)77932-9. PubMed DOI PMC
Mao Y, et al. Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J. 2013;32:2790–2803. doi: 10.1038/emboj.2013.197. PubMed DOI PMC
Delarue M, et al. Self-driven jamming in growing microbial populations. Nat. Phys. 2016;12:762–766. doi: 10.1038/nphys3741. PubMed DOI PMC
Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304:30–34. doi: 10.1038/304030a0. PubMed DOI
Zheng L, et al. Pervasive and stochastic changes in the TCR repertoire of regulatory T cell-deficient mice. Int Immunol. 2008;20:517–523. doi: 10.1093/intimm/dxn017. PubMed DOI PMC
Chai Q, et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity. 2013;38:1013–1024. doi: 10.1016/j.immuni.2013.03.012. PubMed DOI PMC
Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC
Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-P. Tissue morphogenesis, methods and protocols. Methods Mol. Biol. 2014;1189:219–235. doi: 10.1007/978-1-4939-1164-6_15. PubMed DOI
Colombelli J, Grill SW, Stelzer EHK. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev. Sci. Instrum. 2004;75:472–478. doi: 10.1063/1.1641163. DOI
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 2017;18:758–770. doi: 10.1038/nrm.2017.87. PubMed DOI PMC
Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. Mosaic analysis with double markers in mice. Cell. 2005;121:479–492. doi: 10.1016/j.cell.2005.02.012. PubMed DOI
Contreras X, et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep. 2021;35:109274. doi: 10.1016/j.celrep.2021.109274. PubMed DOI PMC
Hippenmeyer S, Johnson RL, Luo L. Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep. 2013;3:960–967. doi: 10.1016/j.celrep.2013.02.002. PubMed DOI PMC
Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (eds. Simoudis, E. et al.) 226–231 (AAAI Press, 1996).
Bailey, N. T. J. The Elements of Stochastic Processes with Applications to the Natural Sciences. (Wiley-Interscience, 1990).
Schaeuble K, et al. Perivascular fibroblasts of the developing spleen act as LTα1β2-dependent precursors of both T and B zone organizer cells. Cell Rep. 2017;21:2500–2514. doi: 10.1016/j.celrep.2017.10.119. PubMed DOI
Cheng H-W, et al. Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp. Nat. Commun. 2019;10:1739. doi: 10.1038/s41467-019-09728-3. PubMed DOI PMC
Sun Z, Costell M, Fässler R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 2019;21:25–31. doi: 10.1038/s41556-018-0234-9. PubMed DOI
Austen K, et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 2015;17:1597–1606. doi: 10.1038/ncb3268. PubMed DOI PMC
Braun A, et al. Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 2011;12:879–887. doi: 10.1038/ni.2085. PubMed DOI
Gaya M, et al. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection. Science. 2015;347:667–672. doi: 10.1126/science.aaa1300. PubMed DOI
Choi SY, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat. Commun. 2020;11:519. doi: 10.1038/s41467-020-14293-1. PubMed DOI PMC
Kumar V, et al. A dendritic-cell–stromal axis maintains immune responses in lymph nodes. Immunity. 2015;42:719–730. doi: 10.1016/j.immuni.2015.03.015. PubMed DOI PMC
Mills, S. Histology for Pathologists. (LWW, 2019).
Nieswandt B, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 2007;204:3113–3118. doi: 10.1084/jem.20071827. PubMed DOI PMC
Choi I, et al. Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood. 2011;117:362–365. doi: 10.1182/blood-2010-07-298562. PubMed DOI PMC
Li W, Germain RN, Gerner MY. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat. Protoc. 2019;14:1708–1733. doi: 10.1038/s41596-019-0156-4. PubMed DOI PMC
Susaki EA, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726–739. doi: 10.1016/j.cell.2014.03.042. PubMed DOI
Abe J, et al. Light-sheet fluorescence microscopy for in situ cell interaction analysis in mouse lymph nodes. J. Immunol. Methods. 2016;431:1–10. doi: 10.1016/j.jim.2016.01.015. PubMed DOI
OHTANI O. Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch. Histol. Jpn. 1987;50:557–566. doi: 10.1679/aohc.50.557. PubMed DOI
Ushiki T, Ohtani O, Abe K. Scanning electron microscopic studies of reticular framework in the rat mesenteric lymph node. Anat. Rec. 1995;241:113–122. doi: 10.1002/ar.1092410115. PubMed DOI
Behrndt M, et al. Forces driving epithelial spreading in Zebrafish gastrulation. Science. 2012;338:257–260. doi: 10.1126/science.1224143. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro1, 230–233 (2011).
Thielicke W, Stamhuis EJ. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. J. Open Res. Softw. 2014;2:e30. doi: 10.5334/jors.bl. DOI