The globalizability of temporal discounting
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UU_00030/2
Medical Research Council - United Kingdom
MC_UU_00005/6
Medical Research Council - United Kingdom
PubMed
35817934
PubMed Central
PMC9584811
DOI
10.1038/s41562-022-01392-w
PII: 10.1038/s41562-022-01392-w
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- odložení výhody * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Economic inequality is associated with preferences for smaller, immediate gains over larger, delayed ones. Such temporal discounting may feed into rising global inequality, yet it is unclear whether it is a function of choice preferences or norms, or rather the absence of sufficient resources for immediate needs. It is also not clear whether these reflect true differences in choice patterns between income groups. We tested temporal discounting and five intertemporal choice anomalies using local currencies and value standards in 61 countries (N = 13,629). Across a diverse sample, we found consistent, robust rates of choice anomalies. Lower-income groups were not significantly different, but economic inequality and broader financial circumstances were clearly correlated with population choice patterns.
Aarhus University Aarhus Denmark
Ain Shams University Cairo Egypt
American University of Beirut Beirut Lebanon
Bezirkskrankenhaus Straubing Straubing Germany
Centre for Business Research Judge Business School University of Cambridge Cambridge UK
Centro de Investigación y Docencias Económicas Ciudad de México México
Charles University Prague Czech Republic
Columbia University New York NY USA
Copenhagen University Copenhagen Denmark
Cornell University Ithaca NY USA
Duke Kunshan University Kunshan China
Emory University Atlanta GA USA
Erasmus University Rotterdam Rotterdam Netherlands
Estácio de Sá University Rio de Janeiro Brazil
Faculty of Media and Communications Belgrade Serbia
Fundación Paraguaya Asunción Paraguay
Gombe State University Gombe Nigeria
Green Dock Hostivice Czech Republic
GREGHEC CNRS HEC Paris Jouy en Josas France
Harvard Kennedy School Cambridge MA USA
Harvard University Boston MA USA
Helmut Schmidt University Hamburg Germany
Humboldt University of Berlin Berlin Germany
International Socioeconomics Laboratory New York NY USA
IPHS Bulgarian Academy of Sciences Sofia Bulgaria
Ivo Pilar Institute of Social Sciences Zagreb Croatia
Kaplan Business School Sydney New South Wales Australia
Kyiv School of Economics Kyiv Ukraine
Kyushu University Fukuoka Japan
Laboratory of Research in Social Psychology Rio de Janeiro Brazil
Leeds Beckett University Leeds UK
Leiden University Leiden the Netherlands
London School of Economics and Political Science London UK
Loyola University Chicago Chicago IL USA
Ludwig Maximilians Universität München Munich Germany
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Max Planck Institute for Human Development Berlin Germany
Max Planck Institute for Psycholinguistics Nijmegen the Netherlands
McGill University Montreal Quebec Canada
MRC Cognition and Brain Sciences Unit Cambridge UK
National Institute of Mental Health Klecany Czech Republic
National Scientific and Technical Research Council Buenos Aires Argentina
National University of Singapore Singapore Singapore
Nazarbayev University Nur Sultan Kazakhstan
New Bulgarian University Sofia Bulgaria
Nic Waals Institute Oslo Norway
Oslo New University College Oslo Norway
Pontifical Catholic University of Rio de Janeiro Rio de Janeiro Brazil
PPR Svendborg Svendborg Denmark
Prague University of Economics and Business Prague Czech Republic
Queen's University Belfast Belfast UK
Rotman Research Institute Baycrest Toronto Ontario Canada
Sofia University St Kliment Ohridski Sofia Bulgaria
Ss Cyril and Methodius University Skopje North Macedonia
St Lawrence University Canton NY USA
Sungkyunkwan University Seoul Republic of Korea
SWPS University of Social Sciences and Humanities Warsaw Poland
Tbilisi State University Tbilisi Georgia
Technische Universität Dresden Dresden Germany
Tel Aviv University Tel Aviv Israel
The University of Hong Kong Hong Kong SAR China
The Wharton School of the University of Pennsylvania Philadelphia PA USA
Tilburg University Tilburg the Netherlands
Transilvania University of Brasov Brasov Romania
UN Major Group for Children and Youth Kathmandu Nepal
Unaffiliated Prague Czech Republic
United Nations Children's Fund Kathmandu Nepal
Universidad Autónoma de Madrid Madrid Spain
Universidad Camilo José Cela Madrid Spain
Universidad Torcuato Di Tella Buenos Aires Argentina
Universitas Padjadjaran Bandung Indonesia
University College Cork Cork Ireland
University College London London UK
University of Amsterdam Amsterdam the Netherlands
University of Belgrade Belgrade Serbia
University of Bologna Bologna Italy
University of Cambridge Cambridge UK
University of Central Florida Orlando FL USA
University of Chicago Chicago IL USA
University of Cologne Cologne Germany
University of Fort Hare Alice South Africa
University of Groningen Groningen the Netherlands
University of Klagenfurt Klagenfurt Austria
University of Konstanz Konstanz Germany
University of Ljubljana Ljubljana Slovenia
University of Mannheim Mannheim Germany
University of Oslo Oslo Norway
University of Oxford Oxford UK
University of Padua Padua Italy
University of Porto Porto Portugal
University of St Andrews St Andrews UK
University of Tartu Tartu Estonia
University of Tehran Tehran Iran
University of Trento Trento Italy
University of Vienna Vienna Austria
University of Zagreb Zagreb Croatia
University of Zurich Zurich Switzerland
Uppsala University Uppsala Sweden
Utrecht University Utrecht the Netherlands
Zobrazit více v PubMed
Angrisani, M., Burke, J., Lusardi, A. & Mottola, G. The Stability and Predictive Power of Financial Literacy: Evidence from Longitudinal Data Working Paper No. 28125 (NBER, 2020); 10.3386/w28125
Haushofer J, Fehr E. On the psychology of poverty. Science. 2014;344:862–867. doi: 10.1126/science.1232491. PubMed DOI
Chapman GB. Temporal discounting and utility for health and money. J. Exp. Psychol. Learn. Mem. Cogn. 1996;22:771–791. doi: 10.1037/0278-7393.22.3.771. PubMed DOI
Green L, Myerson J, Mcfadden E. Rate of temporal discounting decreases with amount of reward. Mem. Cogn. 1997;25:715–723. doi: 10.3758/BF03211314. PubMed DOI
Critchfield TS, Kollins SH. Temporal discounting: basic research and the analysis of socially important behavior. J. Appl. Behav. Anal. 2001;34:101–122. doi: 10.1901/jaba.2001.34-101. PubMed DOI PMC
Basile AG, Toplak ME. Four converging measures of temporal discounting and their relationships with intelligence, executive functions, thinking dispositions, and behavioral outcomes. Front. Psychol. 2015;6:728. doi: 10.3389/fpsyg.2015.00728. PubMed DOI PMC
Green L, Myerson J, Lichtman D, Rosen S, Fry A. Temporal discounting in choice between delayed rewards: the role of age and income. Psychol. Aging. 1996;11:79–84. doi: 10.1037/0882-7974.11.1.79. PubMed DOI
Falk A, et al. Global evidence on economic preferences. Q. J. Econ. 2018;133:1645–1692. doi: 10.1093/qje/qjy013. DOI
Adamkovič M, Martončik M. A review of consequences of poverty on economic decision-making: a hypothesized model of a cognitive mechanism. Front. Psychol. 2017;8:1784. doi: 10.3389/fpsyg.2017.01784. PubMed DOI PMC
Brown JR, Ivković Z, Weisbenner S. Empirical determinants of intertemporal choice. J. Financ. Econ. 2015;116:473–486. doi: 10.1016/j.jfineco.2015.04.004. DOI
Shah AK, Mullainathan S, Shafir E. Some consequences of having too little. Science. 2012;338:682–685. doi: 10.1126/science.1222426. PubMed DOI
Sheehy-Skeffington, J. & Rea, J. How Poverty Affects People’s Decision-Making Processes (JRF, 2017); https://www.jrf.org.uk/report/how-poverty-affects-peoples-decision-making-processes
Epper T, et al. Time discounting and wealth inequality. Am. Econ. Rev. 2020;110:1177–1205. doi: 10.1257/aer.20181096. DOI
Lawrance EC. Poverty and the rate of time preference: evidence from panel data. J. Polit. Econ. 1991;99:54–77. doi: 10.1086/261740. DOI
Deaton, A. COVID-19 and Global Income Inequality Working Paper No. 28392 (NBER, 2021); 10.3386/w28392 PubMed PMC
Ludwig RM, Flournoy JC, Berkman ET. Inequality in personality and temporal discounting across socioeconomic status? Assessing the evidence. J. Res. Pers. 2019;81:79–87. doi: 10.1016/j.jrp.2019.05.003. PubMed DOI PMC
Ruggeri, K. & Folke, T. Unstandard deviation: the untapped value of positive deviance for reducing inequalities. Perspect. Psychol. Sci.10.31234/osf.io/8wky5 (2021). PubMed
Burro G, McDonald R, Read D, Taj U. Patience decreases with age for the poor but not for the rich: an international comparison. J. Econ. Behav. Organ. 2022;193:596–621. doi: 10.1016/j.jebo.2021.11.005. DOI
Carvalho LS, Meier S, Wang SW. Poverty and economic decision-making: evidence from changes in financial resources at payday. Am. Econ. Rev. 2016;106:260–284. doi: 10.1257/aer.20140481. PubMed DOI PMC
Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M. & Yannelis, C. Income, Liquidity, and the Consumption Response to the 2020 Economic Stimulus Payments Working Paper No. 27097 (NBER, 2020); 10.3386/w27097
Falk A, Hermle J. Relationship of gender differences in preferences to economic development and gender equality. Science. 2018;362:eaas9899. doi: 10.1126/science.aas9899. PubMed DOI
Rieger MO, Wang M, Hens T. Universal time preference. PLoS ONE. 2021;16:e0245692. doi: 10.1371/journal.pone.0245692. PubMed DOI PMC
Ha, J., Ivanova, A., Montiel, P. & Pedroni, P. Inflation in Low-Income Countries Working Paper No. 8934 (World Bank, 2019); 10.1596/1813-9450-8934
Gong L. Endogenous time preference, inflation, and capital accumulation. J. Econ. 2006;87:241–255. doi: 10.1007/s00712-006-0177-7. DOI
De Mello LR, Jr., Carneiro FG. Consumption behaviour and persistently high inflation: evidence from Latin America. Rev. Bras. Econ. 2000;54:227–246. doi: 10.1590/S0034-71402000000200005. DOI
Loewenstein G, Prelec D. Anomalies in intertemporal choice: evidence and an interpretation. Q. J. Econ. 1992;107:573–597. doi: 10.2307/2118482. DOI
Read D. Is time-discounting hyperbolic or subadditive? J. Risk Uncertain. 2001;23:5–32. doi: 10.1023/A:1011198414683. DOI
Read, D. & Scholten, M. in Economic Psychology (ed. Ranyard, R.) 35–50 (John Wiley & Sons, 2017); 10.1002/9781118926352.ch3
Yarkoni, T. The generalizability crisis. Behav. Brain Sci.10.1017/S0140525X20001685 (2020). PubMed PMC
Ruggeri K, et al. Replicating patterns of prospect theory for decision under risk. Nat. Hum. Behav. 2020;4:622–633. doi: 10.1038/s41562-020-0886-x. PubMed DOI
Macchia L, Plagnol AC, Reimers S. Does experience with high inflation affect intertemporal decision making? Sensitivity to inflation rates in Argentine and British delay discounting choices. J. Behav. Exp. Econ. 2018;75:76–83. doi: 10.1016/j.socec.2018.05.006. DOI
Clot S, Stanton CY. Present bias predicts participation in payments for environmental services: evidence from a behavioral experiment in Uganda. Ecol. Econ. 2014;108:162–170. doi: 10.1016/j.ecolecon.2014.07.026. DOI
Blumenstock, J. E., Callen, M. & Ghani, T. Mobile-Izing Savings with Automatic Contributions: Experimental Evidence on Present Bias and Default Effects in Afghanistan Discussion Paper No. DP11400 (CEPR, 2016); https://papers.ssrn.com/abstract=2814075
Ebrahimi Sarv Olia MH, Salimi MJ, Bolo G, Ghouchifard H. Sign effect, speedup–delay asymmetry and gender effect in the Tehran stock exchange. Int. J. Finance Manage. Account. 2020;5:41–53.
Scholten M, Read D, Sanborn A. Weighing outcomes by time or against time? Evaluation rules in intertemporal choice. Cogn. Sci. 2014;38:399–438. doi: 10.1111/cogs.12104. PubMed DOI
Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 2019;7:e6876. doi: 10.7717/peerj.6876. PubMed DOI PMC
Wiseman DB, Levin IP. Comparing risky decision making under conditions of real and hypothetical consequences. Organ. Behav. Hum. Decis. Process. 1996;66:241–250. doi: 10.1006/obhd.1996.0053. DOI
Kühberger A, Schulte-Mecklenbeck M, Perner J. Framing decisions: hypothetical and real. Organ. Behav. Hum. Decis. Process. 2002;89:1162–1175. doi: 10.1016/S0749-5978(02)00021-3. DOI
Amlung M, MacKillop J. Further evidence of close correspondence for alcohol demand decision making for hypothetical and incentivized rewards. Behav. Process. 2015;113:187–191. doi: 10.1016/j.beproc.2015.02.012. PubMed DOI PMC
Madden GJ, Begotka AM, Raiff BR, Kastern LL. Delay discounting of real and hypothetical rewards. Exp. Clin. Psychopharmacol. 2003;11:139–145. doi: 10.1037/1064-1297.11.2.139. PubMed DOI
Locey ML, Jones BA, Rachlin H. Real and hypothetical rewards. Judgm. Decis. Mak. 2011;6:552–564. doi: 10.1017/S1930297500002515. PubMed DOI PMC
Brañas-Garza P, Estepa-Mohedano L, Jorrat D, Orozco V, Rascón-Ramírez E. To pay or not to pay: measuring risk preferences in lab and field. Judgm. Decis. Mak. 2021;16:1290–1313. doi: 10.1017/S1930297500008433. DOI
Halevy Y. Strotz meets Allais: diminishing impatience and the certainty effect. Am. Econ. Rev. 2008;98:1145–1162. doi: 10.1257/aer.98.3.1145. DOI
Chakraborty A, Halevy Y, Saito K. The relation between behavior under risk and over time. Am. Econ. Rev. Insights. 2020;2:1–16. doi: 10.1257/aeri.20190051. DOI
Epper, T. F. & Fehr-Duda, H. The missing link: unifying risk taking and time discounting. SSRN J.10.2139/ssrn.2175461 (2012).
Urassa M, et al. Cross-cultural research must prioritize equitable collaboration. Nat. Hum. Behav. 2021;5:668–671. doi: 10.1038/s41562-021-01076-x. PubMed DOI
IJzerman, H. et al. Psychological science needs the entire globe. APS Obs.34 (2021).
Gini Index (World Bank) (2021); https://data.worldbank.org/indicator/SI.POV.GINI
Shah AK, Mullainathan S, Shafir E. An exercise in self-replication: replicating Shah, Mullainathan, and Shafir (2012) J. Econ. Psychol. 2019;75:102127. doi: 10.1016/j.joep.2018.12.001. DOI
Hensher, D. A. & Johnson, L. W. Applied Discrete-Choice Modelling (Routledge, 2018).
Camerer CF, et al. Evaluating replicability of laboratory experiments in economics. Science. 2016;351:1433–1436. doi: 10.1126/science.aaf0918. PubMed DOI
Desmond M, Wilmers N. Do the poor pay more for housing? Exploitation, profit, and risk in rental markets. Am. J. Sociol. 2019;124:1090–1124. doi: 10.1086/701697. DOI
Cardaci A. Inequality, household debt and financial instability: an agent-based perspective. J. Econ. Behav. Organ. 2018;149:434–458. doi: 10.1016/j.jebo.2018.01.010. DOI
Causa, O., Hermansen, M., Ruiz, N., Klein, C. & Smidova, Z. Inequality in Denmark through the Looking Glass (OECD, 2016).
Ruggeri, K. et al. The general fault in our fault lines. Nat. Hum. Behav.10.1038/s41562-021-01092-x (2021). PubMed
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC, 2017).
Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package, version 1.8-39 (2021).
Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
Wesner JS, Pomeranz JPF. Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. Ecosphere. 2021;12:e03739. doi: 10.1002/ecs2.3739. DOI
Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D. Indices of effect existence and significance in the Bayesian framework. Front. Psychol. 2019;10:2767. doi: 10.3389/fpsyg.2019.02767. PubMed DOI PMC
Kelter, R. How to choose between different Bayesian posterior indices for hypothesis testing in practice. Multivariate Behav. Res.10.1080/00273171.2021.1967716 (2021). PubMed
R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Microsoft R Open: The Enhanced R Distribution (MRAN) (2021); https://mran.microsoft.com/open
Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based Ment. Health. 2019;22:153–160. doi: 10.1136/ebmental-2019-300117. PubMed DOI PMC
Simon, W. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. R package, version 0.2-6 (2021).
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).
Wickham H, et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
A 27-country test of communicating the scientific consensus on climate change
A synthesis of evidence for policy from behavioural science during COVID-19
The persistence of cognitive biases in financial decisions across economic groups