Human myelin proteolipid protein structure and lipid bilayer stacking
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
275225
Biotieteiden ja Ympäristön Tutkimuksen Toimikunta
PubMed
35829923
PubMed Central
PMC9279222
DOI
10.1007/s00018-022-04428-6
PII: 10.1007/s00018-022-04428-6
Knihovny.cz E-resources
- Keywords
- Atomic force microscopy, DM20, Integral membrane protein, Myelin, Proteolipid protein, Small-angle scattering,
- MeSH
- Axons metabolism MeSH
- Central Nervous System metabolism MeSH
- Humans MeSH
- Lipid Bilayers * metabolism MeSH
- Myelin Sheath metabolism MeSH
- Myelin Proteolipid Protein * metabolism MeSH
- Protein Isoforms metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipid Bilayers * MeSH
- Myelin Proteolipid Protein * MeSH
- Protein Isoforms MeSH
The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biomedicine University of Bergen Bergen Norway
Department of Chemistry and Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu University of Oulu Oulu Finland
See more in PubMed
Stassart RM, Möbius W, Nave K-A, Edgar JM. The axon-myelin unit in development and degenerative disease. Front Neurosci. 2018;12:467. doi: 10.3389/fnins.2018.00467. PubMed DOI PMC
Hildebrand C, Remahl S, Persson H, Bjartmar C. Myelinated nerve fibres in the CNS. Prog Neurobiol. 1993;40:319–384. doi: 10.1016/0301-0082(93)90015-k. PubMed DOI
Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochem Biophys Acta. 2015;1851:999–1005. doi: 10.1016/j.bbalip.2014.12.016. PubMed DOI
Nave K-A, Werner HB. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol. 2014;30:503–533. doi: 10.1146/annurev-cellbio-100913-013101. PubMed DOI
Jahn O, Tenzer S, Werner HB. Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol. 2009;40:55–72. doi: 10.1007/s12035-009-8071-2. PubMed DOI PMC
Jahn O, Siems SB, Kusch K, et al. The CNS myelin proteome: deep profile and persistence after post-mortem delay. Front Cell Neurosci. 2020 doi: 10.3389/fncel.2020.00239. PubMed DOI PMC
Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006;63:1945–1961. doi: 10.1007/s00018-006-6094-7. PubMed DOI PMC
Greer JM, Lees MB. Myelin proteolipid protein–the first 50 years. Int J Biochem Cell Biol. 2002;34:211–215. doi: 10.1016/S1357-2725(01)00136-4. PubMed DOI
Raasakka A, Ruskamo S, Kowal J, et al. membrane association landscape of myelin basic protein portrays formation of the myelin major dense line. Sci Rep. 2017;7:4974-017-05364–3. doi: 10.1038/s41598-017-05364-3. PubMed DOI PMC
Readhead C, Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld) Behav Genet. 1990;20:213–234. doi: 10.1007/BF01067791. PubMed DOI
Aggarwal S, Yurlova L, Snaidero N, et al. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell. 2011;21:445–456. doi: 10.1016/j.devcel.2011.08.001. PubMed DOI
Nave KA, Lai C, Bloom FE, Milner RJ. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci U S A. 1987;84:5665–5669. doi: 10.1073/pnas.84.16.5665. PubMed DOI PMC
Weimbs T, Stoffel W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry. 1992;31:12289–12296. doi: 10.1021/bi00164a002. PubMed DOI
Bizzozero OA, Good LK, Evans JE. Cysteine-108 is an acylation site in myelin proteolipid protein. Biochem Biophys Res Commun. 1990;170:375–382. doi: 10.1016/0006-291x(90)91284-y. PubMed DOI
Werner HB, Krämer-Albers E-M, Strenzke N, et al. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia. 2013;61:567–586. doi: 10.1002/glia.22456. PubMed DOI
Castello-Serrano I, Lorent JH, Ippolito R, et al. Myelin-associated MAL and PLP are unusual among multipass transmembrane proteins in preferring ordered membrane domains. J Phys Chem B. 2020;124:5930–5939. doi: 10.1021/acs.jpcb.0c03028. PubMed DOI PMC
Greer JM, Pender MP. Myelin proteolipid protein: an effective autoantigen and target of autoimmunity in multiple sclerosis. J Autoimmun. 2008;31:281–287. doi: 10.1016/j.jaut.2008.04.018. PubMed DOI
Cloake NC, Yan J, Aminian A, et al. PLP1 mutations in patients with multiple sclerosis: identification of a new mutation and potential pathogenicity of the mutations. J Clin Med. 2018 doi: 10.3390/jcm7100342.E342. PubMed DOI PMC
Greer JM, Trifilieff E, Pender MP. Correlation between anti-myelin proteolipid protein (PLP) antibodies and disease severity in multiple sclerosis patients with PLP response-permissive HLA Types. Front Immunol. 2020 doi: 10.3389/fimmu.2020.01891. PubMed DOI PMC
Blackstone C. Hereditary spastic paraplegia. Handb Clin Neurol. 2018;148:633–652. doi: 10.1016/B978-0-444-64076-5.00041-7. PubMed DOI
Inoue K. Pelizaeus-Merzbacher disease: molecular and cellular pathologies and associated phenotypes. Adv Exp Med Biol. 2019;1190:201–216. doi: 10.1007/978-981-32-9636-7_13. PubMed DOI
Lüders KA, Patzig J, Simons M, et al. Genetic dissection of oligodendroglial and neuronal Plp1 function in a novel mouse model of spastic paraplegia type 2. Glia. 2017;65:1762–1776. doi: 10.1002/glia.23193. PubMed DOI
Singh R, Samanta D. Pelizaeus-Merzbacher disease. Treasure Island, FL: StatPearls Publishing; 2022. PubMed
Garbern JY, Cambi F, Tang XM, et al. Proteolipid protein is necessary in peripheral as well as central myelin. Neuron. 1997;19:205–218. doi: 10.1016/s0896-6273(00)80360-8. PubMed DOI
Karim SA, Barrie JA, McCulloch MC, et al. PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus-Merzbacher disease. Glia. 2007;55:341–351. doi: 10.1002/glia.20465. PubMed DOI
Klugmann M, Schwab MH, Pühlhofer A, et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron. 1997;18:59–70. doi: 10.1016/s0896-6273(01)80046-5. PubMed DOI
Rosenbluth J, Nave K-A, Mierzwa A, Schiff R. Subtle myelin defects in PLP-null mice. Glia. 2006;54:172–182. doi: 10.1002/glia.20370. PubMed DOI
Griffiths I, Klugmann M, Anderson T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280:1610–1613. doi: 10.1126/science.280.5369.1610. PubMed DOI
Jurevics H, Hostettler J, Sammond DW, et al. Normal metabolism but different physical properties of myelin from mice deficient in proteolipid protein. J Neurosci Res. 2003;71:826–834. doi: 10.1002/jnr.10544. PubMed DOI
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC
Johansen NT, Pedersen MC, Porcar L, et al. Introducing SEC–SANS for studies of complex self-organized biological systems. Acta Cryst D. 2018;74:1178–1191. doi: 10.1107/S2059798318007180. PubMed DOI
Midtgaard SR, Darwish TA, Pedersen MC, et al. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering. FEBS J. 2018;285:357–371. doi: 10.1111/febs.14345. PubMed DOI
Raasakka A, Ruskamo S, Kowal J, et al. Molecular structure and function of myelin protein P0 in membrane stacking. Sci Rep. 2019;9:642. doi: 10.1038/s41598-018-37009-4. PubMed DOI PMC
Ruskamo S, Krokengen OC, Kowal J, et al. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. J Biol Chem. 2020;295:8692–8705. doi: 10.1074/jbc.RA120.013087. PubMed DOI PMC
Ruskamo S, Yadav RP, Sharma S, et al. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. Acta Crystallogr Sect D Biol Crystallogr. 2014;70:165–176. doi: 10.1107/S1399004713027910. PubMed DOI PMC
Fernández-morán H, Finean JB. Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol. 1957;3:725–748. doi: 10.1083/jcb.3.5.725. PubMed DOI PMC
Caspar DL, Kirschner DA. Myelin membrane structure at 10 A resolution. Nat New Biol. 1971;231:46–52. doi: 10.1038/newbio231046a0. PubMed DOI
Moody MF. X-ray Diffraction pattern of nerve myelin: a method for determining the phases. Science. 1963;142:1173–1174. doi: 10.1126/science.142.3596.1173. PubMed DOI
Suresh S, Wang C, Nanekar R, et al. Myelin basic protein and myelin protein 2 act synergistically to cause stacking of lipid bilayers. Biochemistry. 2010;49:3456–3463. doi: 10.1021/bi100128h. PubMed DOI
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev. 2019;99:1381–1431. doi: 10.1152/physrev.00031.2018. PubMed DOI
Woodward K, Malcolm S. CNS myelination and PLP gene dosage. Pharmacogenomics. 2001;2:263–272. doi: 10.1517/14622416.2.3.263. PubMed DOI
Daffu G, Sohi J, Kamholz J. Proteolipid protein dimerization at cysteine 108: Implications for protein structure. Neurosci Res. 2012 doi: 10.1016/j.neures.2012.07.009. PubMed DOI
Swanton E, Holland A, High S, Woodman P. Disease-associated mutations cause premature oligomerization of myelin proteolipid protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2005;102:4342–4347. doi: 10.1073/pnas.0407287102. PubMed DOI PMC
Schlebach JP, Peng D, Kroncke BM, et al. Reversible folding of human peripheral myelin protein 22, a tetraspan membrane protein. Biochemistry. 2013 doi: 10.1021/bi301635f. PubMed DOI PMC
Zhao J, Krystofiak ES, Ballesteros A, et al. Multiple claudin–claudin cis interfaces are required for tight junction strand formation and inherent flexibility. Commun Biol. 2018;1:1–15. doi: 10.1038/s42003-018-0051-5. PubMed DOI PMC
Boison D, Büssow H, D’Urso D, et al. Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J Neurosci. 1995;15:5502–5513. doi: 10.1523/JNEUROSCI.15-08-05502.1995. PubMed DOI PMC
Inouye H, Tsuruta H, Sedzik J, et al. Tetrameric assembly of full-sequence protein zero myelin glycoprotein by synchrotron x-ray scattering. Biophys J. 1999;76:423–437. doi: 10.1016/S0006-3495(99)77209-7. PubMed DOI PMC
Krause G, Protze J, Piontek J. Assembly and function of claudins: structure-function relationships based on homology models and crystal structures. Semin Cell Dev Biol. 2015;42:3–12. doi: 10.1016/j.semcdb.2015.04.010. PubMed DOI
Piontek J, Krug SM, Protze J, et al. Molecular architecture and assembly of the tight junction backbone. Biochimica et Biophysica Acta (BBA) Biomembranes. 2020;1862:183279. doi: 10.1016/j.bbamem.2020.183279. PubMed DOI
Shapiro L, Doyle JP, Hensley P, et al. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron. 1996;17:435–449. doi: 10.1016/S0896-6273(00)80176-2. PubMed DOI
Suzuki H, Tani K, Fujiyoshi Y. Crystal structures of claudins: insights into their intermolecular interactions. Ann N Y Acad Sci. 2017;1397:25–34. doi: 10.1111/nyas.13371. PubMed DOI
Thompson AJ, Cronin MS, Kirschner DA. Myelin protein zero exists as dimers and tetramers in native membranes of Xenopus laevis peripheral nerve. J Neurosci Res. 2002;67:766–771. doi: 10.1002/jnr.10167. PubMed DOI
Montani L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev Biol. 2021;112:114–122. doi: 10.1016/j.semcdb.2020.07.016. PubMed DOI
Spörkel O, Uschkureit T, Büssow H, Stoffel W. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia. 2002;37:19–30. doi: 10.1002/glia.10014. PubMed DOI
Tuusa J, Raasakka A, Ruskamo S, Kursula P. Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. Mult Scler Demyelinating Disord. 2017;2:4. doi: 10.1186/s40893-017-0021-7. DOI
Denic A, Johnson AJ, Bieber AJ, et al. The relevance of animal models in multiple sclerosis research. Pathophysiology. 2011;18:21–29. doi: 10.1016/j.pathophys.2010.04.004. PubMed DOI PMC
Messier AM, Bizzozero OA. Conserved fatty acid composition of proteolipid protein during brain development and in myelin subfractions. Neurochem Res. 2000;25:449–455. doi: 10.1023/a:1007551723752. PubMed DOI
Mastronardi FG, Ackerley CA, Arsenault L, et al. Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res. 1993;36:315–324. doi: 10.1002/jnr.490360309. PubMed DOI
de Bellard ME. Myelin in cartilaginous fish. Brain Res. 2016;1641:34–42. doi: 10.1016/j.brainres.2016.01.013. PubMed DOI PMC
Schliess F, Stoffel W. Evolution of the myelin integral membrane proteins of the central nervous system. Biol Chem Hoppe Seyler. 1991;372:865–874. doi: 10.1515/bchm3.1991.372.2.865. PubMed DOI
Mittendorf KF, Marinko JT, Hampton CM, et al. Peripheral myelin protein 22 alters membrane architecture. Sci Adv. 2017 doi: 10.1126/sciadv.1700220. PubMed DOI PMC
Dhaunchak AS, Colman DR, Nave K-A. Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher Disease. J Neurosci. 2011;31:14961–14971. doi: 10.1523/JNEUROSCI.2097-11.2011. PubMed DOI PMC
Palaniyar N, Semotok JL, Wood DD, et al. Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. Biochim Biophys Acta. 1998;1415:85–100. doi: 10.1016/s0005-2736(98)00180-1. PubMed DOI
Simons M, Krämer EM, Thiele C, et al. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol. 2000;151:143–154. doi: 10.1083/jcb.151.1.143. PubMed DOI PMC
Mathews ES, Mawdsley DJ, Walker M, et al. Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression. J Neurosci. 2014;34:3402–3412. doi: 10.1523/JNEUROSCI.4587-13.2014. PubMed DOI PMC
Mathews ES, Appel B. Cholesterol biosynthesis supports myelin gene expression and axon ensheathment through modulation of P13K/Akt/mTor signaling. J Neurosci. 2016;36:7628–7639. doi: 10.1523/JNEUROSCI.0726-16.2016. PubMed DOI PMC
Blaurock AE, Caspar DL, Schmitt FO. X-ray diffraction of living nerve. Small-angle diffraction. Neurosci Res Program Bull. 1971;9:512–515. PubMed
Boullerne AI. The history of myelin. Exp Neurol. 2016;283:431–445. doi: 10.1016/j.expneurol.2016.06.005. PubMed DOI PMC
Finean JB. X-ray analysis of the structure of peripheral nerve myelin. Nature. 1954;173:549–550. doi: 10.1038/173549a0. PubMed DOI
Kirschner DA, Caspar DL. Comparative diffraction studies on myelin membranes. Ann N Y Acad Sci. 1972;195:309–320. doi: 10.1111/j.1749-6632.1972.tb54811.x. PubMed DOI
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model. 2019;25:76. doi: 10.1007/s00894-019-3964-0. PubMed DOI
Blaurock AE, Worthington CR. Low-angle X-ray diffraction patterns from a variety of myelinated nerves. J Comp Neurol. 1969;173:419–426. doi: 10.1016/0005-2736(69)90006-6. PubMed DOI
Chandross RJ, Adams JB, Bear RS. Discontinuous transition of myelin structure at the junction between central and peripheral components of the eighth cranial nerve, as disclosed by X-ray diffraction. J Comp Neurol. 1978;177:11–15. doi: 10.1002/cne.901770103. PubMed DOI
Dupouey P, Jacque C, Bourre JM, et al. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett. 1979;12:113–118. doi: 10.1016/0304-3940(79)91490-3. PubMed DOI
Privat A, Jacque C, Bourre JM, et al. Absence of the major dense line in myelin of the mutant mouse “shiverer”. Neurosci Lett. 1979;12:107–112. doi: 10.1016/0304-3940(79)91489-7. PubMed DOI
Thureau A, Roblin P, Pérez J. BioSAXS on the SWING beamline at Synchrotron SOLEIL. J Appl Cryst. 2021;54:1698–1710. doi: 10.1107/S1600576721008736. DOI
Blanchet CE, Spilotros A, Schwemmer F, et al. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY) J Appl Cryst. 2015;48:431–443. doi: 10.1107/S160057671500254X. PubMed DOI PMC
Manalastas-Cantos K, Konarev PV, Hajizadeh NR, et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Cryst. 2021;54:343–355. doi: 10.1107/S1600576720013412. PubMed DOI PMC
Asthana P, Singh D, Pedersen JS, et al. Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis. IUCrJ. 2021;8:757–774. doi: 10.1107/S2052252521006199. PubMed DOI PMC
Calcutta A, Jessen CM, Behrens MA, et al. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant. Biochim Biophys Acta. 2012;1818:2290–2301. doi: 10.1016/j.bbamem.2012.04.005. PubMed DOI
Døvling Kaspersen J, Moestrup Jessen C, Stougaard Vad B, et al. Low-resolution structures of OmpA⋅DDM protein-detergent complexes. ChemBioChem. 2014;15:2113–2124. doi: 10.1002/cbic.201402162. PubMed DOI
Harwood SL, Lyngsø J, Zarantonello A, et al. Structural investigations of human A2M identify a hollow native conformation that underlies its distinctive protease-trapping mechanism. Mol Cell Proteom. 2021;20:100090. doi: 10.1016/j.mcpro.2021.100090. PubMed DOI PMC
Svergun DI, Richard S, Koch MHJ, et al. Protein hydration in solution: experimental observation by x-ray and neutron scattering. PNAS. 1998;95:2267–2272. doi: 10.1073/pnas.95.5.2267. PubMed DOI PMC
Svergun DI, Petoukhov MV, Koch MH. Determination of domain structure of proteins from X-ray solution scattering. Biophys J. 2001;80:2946–2953. doi: 10.1016/S0006-3495(01)76260-1. PubMed DOI PMC