Detection and Quantification of ctDNA for Longitudinal Monitoring of Treatment in Non-Small Cell Lung Cancer Patients Using a Universal Mutant Detection Assay by Denaturing Capillary Electrophoresis
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35837614
PubMed Central
PMC9274771
DOI
10.3389/pore.2022.1610308
PII: 1610308
Knihovny.cz E-resources
- Keywords
- KRAS mutations, NSCLC, TP53 mutations, capillary electrophoresis, ctDNA, liquid biopsy, minimal residual disease,
- MeSH
- Circulating Tumor DNA * genetics MeSH
- DNA, Neoplasm genetics MeSH
- Electrophoresis, Capillary MeSH
- Humans MeSH
- Mutation genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Lung Neoplasms * drug therapy MeSH
- Carcinoma, Non-Small-Cell Lung * genetics therapy MeSH
- Neoplasm, Residual MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Circulating Tumor DNA * MeSH
- DNA, Neoplasm MeSH
- Biomarkers, Tumor MeSH
Background: Observation of anticancer therapy effect by monitoring of minimal residual disease (MRD) is becoming an important tool in management of non-small cell lung cancer (NSCLC). The approach is based on periodic detection and quantification of tumor-specific somatic DNA mutation in circulating tumor DNA (ctDNA) extracted from patient plasma. For such repetitive testing, complex liquid-biopsy techniques relying on ultra-deep NGS sequencing are impractical. There are other, cost-effective, methods for ctDNA analysis, typically based on quantitative PCR or digital PCR, which are applicable for detecting specific individual mutations in hotspots. While such methods are routinely used in NSCLC therapy prediction, however, extension to cover broader spectrum of mutations (e.g., in tumor suppressor genes) is required for universal longitudinal MRD monitoring. Methods: For a set of tissue samples from 81 NSCLC patients we have applied a denaturing capillary electrophoresis (DCE) for initial detection of somatic mutations within 8 predesigned PCR amplicons covering oncogenes and tumor suppressor genes. Mutation-negative samples were then subjected to a large panel NGS sequencing. For each patient mutation found in tissue was then traced over time in ctDNA by DCE. Results: In total we have detected a somatic mutation in tissue of 63 patients. For those we have then prospectively analyzed ctDNA from collected plasma samples over a period of up to 2 years. The dynamics of ctDNA during the initial chemotherapy therapy cycles as well as in the long-term follow-up matched the clinically observed response. Conclusion: Detection and quantification of tumor-specific mutations in ctDNA represents a viable complement to MRD monitoring during therapy of NSCLC patients. The presented approach relying on initial tissue mutation detection by DCE combined with NGS and a subsequent ctDNA mutation testing by DCE only represents a cost-effective approach for its routine implementation.
Center for Applied Genomics of Solid Tumors Genomac Research Institute Prague Czechia
Department of Analytical Chemistry Faculty of Science Charles University Prague Czechia
See more in PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68(6):394–424. 10.3322/caac.21492 PubMed DOI
Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J Natl Compr Canc Netw (2021) 19(3):254–66. 10.6004/jnccn.2021.0013 PubMed DOI
Gubens MA, Davies M. NCCN Guidelines Updates: New Immunotherapy Strategies for Improving Outcomes in Non-Small Cell Lung Cancer. J Natl Compr Canc Netw (2019) 17:574–8. 10.6004/jnccn.2019.5005 PubMed DOI
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular Profiling for Precision Cancer Therapies. Genome Med (2020) 12(1):8. 10.1186/s13073-019-0703-1 PubMed DOI PMC
Theodoropoulos AS, Gkiozos I, Kontopyrgias G, Charpidou A, Kotteas E, Kyrgias G, et al. Modern Radiopharmaceuticals for Lung Cancer Imaging with Positron Emission Tomography/Computed Tomography Scan: A Systematic Review. SAGE Open Med (2020) 8:205031212096159. 10.1177/2050312120961594 PubMed DOI PMC
Boonstra PA, Wind TT, van Kruchten M, Schuuring E, Hospers GAP, van der Wekken AJ, et al. Clinical Utility of Circulating Tumor DNA as a Response and Follow-Up Marker in Cancer Therapy. Cancer Metastasis Rev (2020) 39(3):999–1013. 10.1007/s10555-020-09876-9 PubMed DOI PMC
Schwarzenbach H, Hoon DSB, Pantel K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat Rev Cancer (2011) 11(6):426–37. 10.1038/nrc3066 PubMed DOI
Diaz LA, Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J Clin Oncol (2014) 32(6):579–86. 10.1200/JCO.2012.45.2011 PubMed DOI PMC
Peng Y, Mei W, Ma K, Zeng C. Circulating Tumor DNA and Minimal Residual Disease (MRD) in Solid Tumors: Current Horizons and Future Perspectives. Front Oncol (2021) 11:763790. 10.3389/fonc.2021.763790 PubMed DOI PMC
Zheng D, Ye X, Zhang MZ, Sun Y, Wang JY, Ni J, et al. Plasma EGFR T790M ctDNA Status is Associated with Clinical Outcome in Advanced NSCLC Patients with Acquired EGFR-TKI Resistance. Sci Rep (2016) 6:20913. 10.1038/srep20913 PubMed DOI PMC
Karlovich C, Goldman JW, Sun J-M, Mann E, Sequist LV, Konopa K, et al. Assessment of EGFR Mutation Status in Matched Plasma and Tumor Tissue of NSCLC Patients from a Phase I Study of Rociletinib (CO-1686). Clin Cancer Res (2016) 22(10):2386–95. 10.1158/1078-0432.CCR-15-1260 PubMed DOI PMC
Garrido P, Paz‐Ares L, Majem M, Morán T, Trigo JM, Bosch‐Barrera J, et al. LungBEAM: A Prospective Multicenter Study to Monitor Stage IV NSCLC Patients with EGFR Mutations Using BEAMing Technology. Cancer Med (2021) 10(17):5878–88. 10.1002/cam4.4135 PubMed DOI PMC
Fernandes MGO, Sousa C, Pereira Reis J, Cruz-Martins N, Souto Moura C, Guimarães S, et al. Liquid Biopsy for Disease Monitoring in Non-Small Cell Lung Cancer: The Link Between Biology and the Clinic. Cells (2021) 10(8):1912. 10.3390/cells10081912 PubMed DOI PMC
Metzenmacher M, Hegedüs B, Forster J, Schramm A, Horn PA, Klein CA, et al. Combined Multimodal ctDNA Analysis and Radiological Imaging for Tumor Surveillance in Non-Small Cell Lung Cancer. Transl Oncol (2022) 15(1):101279. 10.1016/j.tranon.2021.101279 PubMed DOI PMC
de Kock R, Borne Bv. d., Soud MYE, Belderbos H, Stege G, de Saegher M, et al. Circulating Biomarkers for Monitoring Therapy Response and Detection of Disease Progression in Lung Cancer Patients. Cancer Treat Res Commun (2021) 28:100410. 10.1016/j.ctarc.2021.100410 PubMed DOI
Di Capua D, Bracken-Clarke D, Ronan K, Baird A-M, Finn S. The Liquid Biopsy for Lung Cancer: State of the Art, Limitations and Future Developments. Cancers (2021) 13(16):3923. 10.3390/cancers13163923 PubMed DOI PMC
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, Structures, and Functions of Circulating DNA in Oncology. Cancer Metastasis Rev (2016) 35(3):347–76. 10.1007/s10555-016-9629-x PubMed DOI PMC
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and Quantification of Mutations in the Plasma of Patients with Colorectal Tumors. Proc Natl Acad Sci U.S.A (2005) 102(45):16368–73. 10.1073/pnas.0507904102 PubMed DOI PMC
Elazezy M, Joosse SA. Techniques of Using Circulating Tumor DNA as a Liquid Biopsy Component in Cancer Management. Comput Struct Biotechnol J (2018) 16:370–8. 10.1016/j.csbj.2018.10.002 PubMed DOI PMC
Sefrioui D, Mauger F, Leclere L, Beaussire L, Di Fiore F, Deleuze J-F, et al. Comparison of the Quantification of KRAS Mutations by Digital PCR and E-Ice-COLD-PCR in Circulating-Cell-Free DNA from Metastatic Colorectal Cancer Patients. Clinica Chim Acta (2017) 465:1–4. 10.1016/j.cca.2016.12.004 PubMed DOI
Chen H, Zhang J, Chen H-Y, Su B, Lu D. Establishment of Multiplex Allele-Specific Blocker PCR for Enrichment and Detection of 4 Common EGFR Mutations in Non-Small Cell Lung Cancer. Ann Transl Med (2020) 8(22):1509. 10.21037/atm-20-6754 PubMed DOI PMC
Soussi T. The P53 Tumor Suppressor Gene: From Molecular Biology to Clinical Investigation. Ann NY Acad Sci (2000) 910:121–39. 10.1111/j.1749-6632.2000.tb06705.x PubMed DOI
van Es JH, Giles RH, Clevers HC. The Many Faces of the Tumor Suppressor Gene APC. Exp Cel Res (2001) 264(1):126–34. 10.1006/excr.2000.5142 PubMed DOI
Minarikova P, Benesova L, Halkova T, Belsanova B, Suchanek S, Cyrany J, et al. Longitudinal Molecular Characterization of Endoscopic Specimens from Colorectal Lesions. World J Gastroenterol (2016) 22(20):4936–45. 10.3748/wjg.v22.i20.4936 PubMed DOI PMC
Benešová L, Hálková T, Ptáčková R, Semyakina A, Menclová K, Pudil J, et al. Significance of Postoperative Follow-Up of Patients with Metastatic Colorectal Cancer Using Circulating Tumor DNA. World J Gastroenterol (2019) 25(48):6939–48. 10.3748/wjg.v25.i48.6939 PubMed DOI PMC
Pazdirek F, Minarik M, Benesova L, Halkova T, Belsanova B, Macek M, et al. Monitoring of Early Changes of Circulating Tumor DNA in the Plasma of Rectal Cancer Patients Receiving Neoadjuvant Concomitant Chemoradiotherapy: Evaluation for Prognosis and Prediction of Therapeutic Response. Front Oncol (2020) 10:1028. 10.3389/fonc.2020.01028 PubMed DOI PMC
Lian D-S, Zhao S-J. Capillary Electrophoresis Based on the Nucleic Acid Detection in the Application of Cancer Diagnosis and Therapy. Analyst (2014) 139(14):3492–506. 10.1039/c4an00400k PubMed DOI
Fiala O, Pesek M, Finek J, Svaton M, Minarik M, Benesova L, et al. Pemetrexed versus Erlotinib in the Second-Line Treatment of Patients with Advanced-Stage Non-Squamous NSCLC Harboring Wild-Type EGFR Gene. Anticancer Res (2016) 36(1):447–53. PubMed
Bunganič B, Hálková T, Benešová L, Belšánová B, Laclav M, Hrůzová M, et al. KRAS Mutation Assay on EUS-FNA Specimens from Pacients with Pancreatic Mass. Cas Lek Cesk (2016) 155(1):48–51. PubMed
Benesova L, Halkova T, Bunganic B, Belsanova B, Zavoral M, Traboulsi E, et al. Comparison of Native Aspirates and Cytological Smears Obtained by EUS-Guided Biopsies for Effective DNA/RNA Marker Testing in Pancreatic Cancer. Pathol Oncol Res (2020) 26(1):379–85. 10.1007/s12253-018-0490-9 PubMed DOI
Benesova L, Belsanova B, Kramar F, Halkova T, Benes V, Minarik M. Application of Denaturing Capillary Electrophoresis for the Detection of Prognostic Mutations in Isocitrate Dehydrogenase 1 and Isocitrate Dehydrogenase 2 Genes in Brain Tumors. J Sep Sci (2018) 41(13):2819–27. 10.1002/jssc.201701473 PubMed DOI
Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, et al. Mutation-Based Detection and Monitoring of Cell-Free Tumor DNA in Peripheral Blood of Cancer Patients. Anal Biochem (2013) 433(2):227–34. 10.1016/j.ab.2012.06.018 PubMed DOI
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur J Cancer (2009) 45(2):228–47. 10.1016/j.ejca.2008.10.026 PubMed DOI
Salek C, Minarikova P, Benesova L, Nosek V, Strnad R, Zavoral M, et al. Mutation Status of K-Ras, P53 and Allelic Losses at 9p and 18q are Not Prognostic Markers in Patients with Pancreatic Cancer. Anticancer Res (2009) 29:1803–10. PubMed
Bjørheim J, Minarik M, Gaudernack G, Ekstrøm PO. Mutation Detection in KRAS Exon 1 by Constant Denaturant Capillary Electrophoresis in 96 Parallel Capillaries. Anal Biochem (2002) 304(2):200–5. 10.1006/abio.2002.5629 PubMed DOI
Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An Ultrasensitive Method for Quantitating Circulating Tumor DNA with Broad Patient Coverage. Nat Med (2014) 20(5):548–54. 10.1038/nm.3519 PubMed DOI PMC
Mogi A, Kuwano H. TP53 Mutations in Nonsmall Cell Lung Cancer. J Biomed Biotechnol (2011) 2011:1–9. 10.1155/2011/583929 PubMed DOI PMC
Baeissa H, Benstead-Hume G, Richardson CJ, Pearl FMG. Identification and Analysis of Mutational Hotspots in Oncogenes and Tumour Suppressors. Oncotarget (2017) 8(13):21290–304. 10.18632/oncotarget.15514 PubMed DOI PMC