Reduced alpha diversity of the oral microbiome correlates with short progression-free survival in patients with relapsed/refractory multiple myeloma treated with ixazomib-based therapy (AGMT MM 1, phase II trial)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35846090
PubMed Central
PMC9176146
DOI
10.1002/jha2.130
PII: JHA2130
Knihovny.cz E-zdroje
- Klíčová slova
- molecular analysis, mucosal, multiple myeloma,
- Publikační typ
- časopisecké články MeSH
Alterations in the human microbiome have been linked to several malignant diseases. Here, we investigated the oral microbiome of 79 patients with relapsed/refractory multiple myeloma (MM) treated with ixazomib-thalidomide-dexamethasone. Increased alpha diversity (Shannon index) at the phylum level was associated with longer progression-free survival (PFS) (10.2 vs 8.5 months, P = .04), particularly in patients with very long (>75% quartile) PFS . Additionally, alpha diversity was lower in patients with progressive disease (P < .05). These findings suggest an interrelationship between the oral microbiome and outcome in patients with MM and encourage a novel direction for diagnostic and/or therapeutic strategies.
Department of Hematology University of Leipzig Leipzig Germany
Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
Department of Internal Medicine 1 Ordensklinikum Linz BHS EKH Linz Linz Austria
Department of Internal Medicine 3 Kepler Universitätsklinikum GmbH Med Campus 3 Linz Austria
Department of Internal Medicine 5 Medical University Innsbruck Innsbruck Austria
Department of Laboratory Medicine Medical University of Vienna Vienna Austria
Department of Medicine 1 Wilhelminenspital Vienna Austria
Innere Medizin 2 LKH Feldkirch Feldkirch Austria
Joint Microbiome Facility Medical University of Vienna and University of Vienna Vienna Austria
Zobrazit více v PubMed
Calcinotto A, Brevi A, Chesi M, Ferrarese R, Garcia Perez L, Grioni M, et al. Microbiota‐driven interleukin‐17‐producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun. 2018. 9(1):4832. PubMed PMC
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti‐PD‐1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. PubMed PMC
Montassier E, Al‐Ghalith GA, Ward T, Corvec S, Gastinne T, Potel G, et al. Pretreatment gut microbiome predicts chemotherapy‐related bloodstream infection. Genome Med. 2016;8(1):49. PubMed PMC
Zhang B, Gu J, Liu J, Huang B, Li J. Fecal microbiota taxonomic shifts in Chinese multiple myeloma patients analyzed by quantitative polymerase chain reaction (QPCR) and 16S rRNA high‐throughput sequencing. Med Sci Monit. 2019;25:8269–80. PubMed PMC
Pianko MJ, Devlin SM, Littmann ER, Chansakul A, Mastey D, Salcedo M, et al. Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Adv. 2019;3(13):2040–44. PubMed PMC
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next‐generation sequencing‐based diversity studies. Nucleic Acids Res. 2013;41(1):e1. PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high‐resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. PubMed PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Res. 2013;41:D590‐96. PubMed PMC
Ludwig H, Poenisch W, Knop S, Egle A, Schreder M, Lechner D, et al. Ixazomib‐thalidomide‐dexamethasone for induction therapy followed by ixazomib maintenance treatment in patients with relapsed/refractory multiple myeloma. Br J Cancer. 2019. Oct;121(9):751–7. PubMed PMC
Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010;2010:baq013. PubMed PMC
Zaneveld JR, McMinds R, Vega Thurber R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2(9):17121. PubMed
Drago L, Zuccotti GV, Romanò CL, Goswami K, Villafane J, Mattina R, et al. Oral‐gut microbiota and arthritis: is there an evidence‐based axis? J Clin Med. 2019;8(10):1–13. PubMed PMC
Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, Sung AD, et al. Microbiota as predictor of mortality in allogeneic hematopoietic‐cell transplantation. N Engl J Med. 2020;382(9):822–34. PubMed PMC
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T‐cell generation. Nature. 2013;504(7480):451–5. PubMed PMC
Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M, et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood. 2012;120(2):376–85. PubMed PMC