Mitigation of Ionizing Radiation-Induced Gastrointestinal Damage by Insulin-Like Growth Factor-1 in Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35847048
PubMed Central
PMC9277384
DOI
10.3389/fphar.2022.663855
PII: 663855
Knihovny.cz E-zdroje
- Klíčová slova
- blood, insuline-like growth factor- 1, intestine, ionizing radiation, lung, mice,
- Publikační typ
- časopisecké články MeSH
Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.
Zobrazit více v PubMed
Aro A. L., Savikko J., Pulkkinen V., von Willebrand E. (2002). Expression of Insulin-like Growth Factors IGF-I and IGF-II, and Their Receptors during the Growth and Megakaryocytic Differentiation of K562 Cells. Leuk. Res. 26 (9), 831–837. 10.1016/s0145-2126(02)00006-1 PubMed DOI
Bang P., Polak M., Perrot V., Sert C., Shaikh H., Woelfle J. (2022). Pubertal Timing and Growth Dynamics in Children With Severe Primary IGF-1 Deficiency: Results from the European Increlex® Growth Forum Database Registry. Front. Endocrinol. (Lausanne) 13, 812568. 10.3389/fendo.2022.812568 PubMed DOI PMC
Bhat K., Duhachek-Muggy S., Ramanathan R., Saki M., Alli C., Medina P., et al. (2019). 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine Increases the Number of Peyer’s Patch-Associated Regenerating Crypts in the Small Intestines after Radiation Injury. Radiotherapy Oncol. 132, 8–15. 10.1016/j.radonc.2018.11.011 PubMed DOI PMC
Blaabjerg L., Juhl C. B. (2016). Hypoglycemia-Induced Changes in the Electroencephalogram: An Overview. J. Diabetes Sci. Technol. 10 (6), 1259–1267. 10.1177/1932296816659744 PubMed DOI PMC
Bohin N., McGowan K. P., Keeley T. M., Carlson E. A., Yan K. S., Samuelson L. C. (2020). Insulin-like Growth Factor-1 and mTORC1 Signaling Promote the Intestinal Regenerative Response After Irradiation Injury. Cell. Mol. Gastroenterology Hepatology 10 (4), 797–810. 10.1016/j.jcmgh.2020.05.013 PubMed DOI PMC
Chen S., Xu Y., Wang S., Shen M., Chen F., Chen M., et al. (2012). Subcutaneous Administration of rhIGF-I Post Irradiation Exposure Enhances Hematopoietic Recovery and Survival in BALB/c Mice. J. Radiat. Res. 53 (4), 581–587. 10.1093/jrr/rrs029 PubMed DOI PMC
Dahly E. M., Guo Z., Ney D. M. (2002). Alterations in Enterocyte Proliferation and Apoptosis Accompany TPN-Induced Mucosal Hypoplasia and IGF-I-Induced Hyperplasia in Rats. J. Nutr. 132 (7), 2010–2014. 10.1093/jn/132.7.2010 PubMed DOI
Drouet M., Hérodin F. (2010). Radiation Victim Management and the Haematologist in the Future: Time to Revisit Therapeutic Guidelines?. Int. J. Radiat. Biol. 86 (8), 636–648. 10.3109/09553001003789604 PubMed DOI
Gu J., Liu S., Mu N., Huang T., Zhang W., Zhao H., et al. (2017). A DPP-IV-Resistant Glucagon-Like Peptide-2 Dimer With Enhanced Activity Against Radiation-Induced Intestinal Injury. J. Control. Release 260, 32–45. 10.1016/j.jconrel.2017.05.020 PubMed DOI
Hanson W. R., DeLaurentiis K. (1987). Comparison of In Vivo Murine Intestinal Radiation Protection by E-Prostaglandins. Prostaglandins 33 Suppl, 93–104. 10.1016/0090-6980(87)90052-9 PubMed DOI
Hanson W. R., Thomas C. (1983). 16, 16-dimethyl Prostaglandin E2 Increases Survival of Murine Intestinal Stem Cells when Given before Photon Radiation. Radiat. Res. 96 (2), 393–398. 10.2307/3576222 PubMed DOI
Hossain M. A., Adithan A., Alam M. J., Kopalli S. R., Kim B., Kang C. W., et al. (2021). IGF-1 Facilitates Cartilage Reconstruction by Regulating PI3K/AKT, MAPK, and NF-kB Signaling in Rabbit Osteoarthritis. J. Inflamm. Res. 14, 3555–3568. 10.2147/JIR.S316756 PubMed DOI PMC
Howarth G. S., Fraser R., Frisby C. L., Schirmer M. B., Yeoh E. K. (1997). Effects of Insulin-like Growth Factor-I Administration on Radiation Enteritis in Rats. Scand. J. Gastroenterol. 32 (11), 1118–1124. 10.3109/00365529709002990 PubMed DOI
Hughes D. C., Stewart C. E., Sculthorpe N., Dugdale H. F., Yousefian F., Lewis M. P., et al. (2016). Testosterone Enables Growth and Hypertrophy in Fusion Impaired Myoblasts that Display Myotube Atrophy: Deciphering the Role of Androgen and IGF-I Receptors. Biogerontology 17 (3), 619–639. 10.1007/s10522-015-9621-9 PubMed DOI PMC
Jackson I. L., Zhang Y., Bentzen S. M., Hu J., Zhang A., Vujaskovic Z. (2016). Pathophysiological Mechanisms Underlying Phenotypic Differences in Pulmonary Radioresponse. Sci. Rep. 6, 36579. 10.1038/srep36579 PubMed DOI PMC
Kenchegowda D., Legesse B., Hritzo B., Olsen C., Aghdam S., Kaur A., et al. (2018). Selective Insulin-like Growth Factor Resistance Associated with Heart Hemorrhages and Poor Prognosis in a Novel Preclinical Model of the Hematopoietic Acute Radiation Syndrome. Radiat. Res. 190 (2), 164–175. 10.1667/RR14993.1 PubMed DOI PMC
Li W., Lin Y., Luo Y., Wang Y., Lu Y., Li Y., et al. (2021). Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients 13 (9), 2910. 10.3390/nu13092910 PubMed DOI PMC
Li Y., Li K. (2014). Osteocalcin Induces Growth Hormone/insulin-like Growth Factor-1 System by Promoting Testosterone Synthesis in Male Mice. Horm. Metab. Res. 46 (11), 768–773. 10.1055/s-0034-1371869 PubMed DOI
Li Y. M., Schacher D. H., Liu Q., Arkins S., Rebeiz N., McCusker R. H., et al. (1997). Regulation of Myeloid Growth and Differentiation by the Insulin-like Growth Factor I Receptor. Endocrinology 138 (1), 362–368. 10.1210/endo.138.1.4847 PubMed DOI
Lierova A., Jelicova M., Nemcova M., Proksova M., Pejchal J., Zarybnicka L., et al. (2018). Cytokines and Radiation-Induced Pulmonary Injuries. J. Radiat. Res. 59 (6), 709–753. 10.1093/jrr/rry067 PubMed DOI PMC
Lu L., Li W., Chen L., Su Q., Wang Y., Guo Z., et al. (2019). Radiation-induced Intestinal Damage: Latest Molecular and Clinical Developments. Future Oncol. 15 (35), 4105–4118. 10.2217/fon-2019-0416 PubMed DOI
Meena S. K., Joriya P. R., Yadav S. M., Kumar R., Meena P., Patel D. D. (2022). Modulation of Radiation-Induced Intestinal Injury by Radioprotective Agents: a Cellular and Molecular Perspectives. Rev. Environ. Health. In press. 10.1515/reveh-2021-0108 PubMed DOI
Miyagawa S., Kobayashi M., Konishi N., Sato T., Ueda K. (2000). Insulin and Insulin-like Growth Factor I Support the Proliferation of Erythroid Progenitor Cells in Bone Marrow through the Sharing of Receptors. Br. J. Haematol. 109 (3), 555–562. 10.1046/j.1365-2141.2000.02047.x PubMed DOI
Parmigiani S., Palanza P., Rogers J., Ferrari P. F. (1999). Selection, Evolution of Behavior and Animal Models in Behavioral Neuroscience. Neurosci. Biobehav. Rev. 23 (7), 957–969. 10.1016/s0149-7634(99)00029-9 PubMed DOI
Patterson A. M., Liu L., Sampson C. H., Plett P. A., Li H., Singh P., et al. (2020). A Single Radioprotective Dose of Prostaglandin E2 Blocks Irradiation-Induced Apoptotic Signaling and Early Cycling of Hematopoietic Stem Cells. Stem Cell. Rep. 15 (2), 358–373. 10.1016/j.stemcr.2020.07.004 PubMed DOI PMC
Pejchal J., Novotný J., Mařák V., Osterreicher J., Tichý A., Vávrová J., et al. (2012). Activation of P38 MAPK and Expression of TGF-β1 in Rat Colon Enterocytes after Whole Body γ-irradiation. Int. J. Radiat. Biol. 88 (4), 348–358. 10.3109/09553002.2012.654044 PubMed DOI
Pejchal J., Šinkorová Z., Tichý A., Kmochová A., Ďurišová K., Kubelková K., et al. (2015). Attenuation of Radiation-Induced Gastrointestinal Damage by Epidermal Growth Factor and Bone Marrow Transplantation in Mice. Int. J. Radiat. Biol. 91 (9), 703–714. 10.3109/09553002.2015.1054528 PubMed DOI
Porter R. L., Georger M. A., Bromberg O., McGrath K. E., Frisch B. J., Becker M. W., et al. (2013). Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery after Radiation Injury. Stem Cells 31 (2), 372–383. 10.1002/stem.1286 PubMed DOI PMC
Potten C. S., Grant H. K. (1998). The Relationship between Ionizing Radiation-Induced Apoptosis and Stem Cells in the Small and Large Intestine. Br. J. Cancer 78 (8), 993–1003. 10.1038/bjc.1998.618 PubMed DOI PMC
Qiu W., Leibowitz B., Zhang L., Yu J. (2010). Growth Factors Protect Intestinal Stem Cells from Radiation-Induced Apoptosis by Suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene 29 (11), 1622–1632. 10.1038/onc.2009.451 PubMed DOI PMC
Ratajczak J., Zhang Q., Pertusini E., Wojczyk B. S., Wasik M. A., Ratajczak M. Z. (1998). The Role of Insulin (INS) and Insulin-like Growth Factor-I (IGF-I) in Regulating Human Erythropoiesis. Studies In Vitro under Serum-free Conditions-Ccomparison to Other Cytokines and Growth Factors. Leukemia 12 (3), 371–381. 10.1038/sj.leu.2400927 PubMed DOI
Rowland K. J., Brubaker P. L. (2011). The "cryptic" Mechanism of Action of Glucagon-like Peptide-2. Am J Physiol Gastrointest Liver PhysiolGastrointestinal Liver Physiology 301 (1), G1–G8. 10.1152/ajpgi.00039.2011 PubMed DOI
Sakai T., Hara J., Yamamura K., Okazaki A., Ohkura N., Sone T., et al. (2018). Role of Prostaglandin I2 in the Bronchoconstriction-Triggered Cough Response in guinea Pigs. Exp. Lung Res. 44, 455–463. 10.1016/j.pupt.2017.09.00310.1080/01902148.2019.1590883 PubMed DOI
Singh V. K., Seed T. M. (2020). Pharmacological Management of Ionizing Radiation Injuries: Current and Prospective Agents and Targeted Organ Systems. Expert Opin. Pharmacother. 21 (3), 317–337. 10.1080/14656566.2019.1702968 PubMed DOI PMC
Van Landeghem L., Santoro M. A., Mah A. T., Krebs A. E., Dehmer J. J., McNaughton K. K., et al. (2015). IGF1 Stimulates Crypt Expansion via Differential Activation of 2 Intestinal Stem Cell Populations. FASEB J. 29 (7), 2828–2842. 10.1096/fj.14-264010 PubMed DOI PMC
Woodall S. M., Breier B. H., O'Sullivan U., Gluckman P. D. (1991). The Effect of the Frequency of Subcutaneous Insulin-like Growth Factor-1 Administration on Weight Gain in Growth Hormone Deficient Mice. Horm. Metab. Res. 23 (12), 581–584. 10.1055/s-2007-1003760 PubMed DOI
Yang L., Tan Z., Li Y., Zhang X., Wu Y., Xu B., et al. (2020). Insulin-like Growth Factor 1 Promotes Proliferation and Invasion of Papillary Thyroid Cancer through the STAT3 Pathway. J. Clin. Laboratory Analysis 34 (12), e23531. 10.1002/jcla.23531 PubMed DOI PMC
Zhang S., Luan X., Li H., Jin Z. (2022). Insulin-like Growth Factor-1: A Potential Target for Bronchopulmonary Dysplasia Treatment (Review). Exp. Ther. Med. 23 (3), 191. 10.3892/etm.2022.11114 PubMed DOI PMC