Randomized, placebo-controlled, phase 3 study of perifosine combined with bortezomib and dexamethasone in patients with relapsed, refractory multiple myeloma previously treated with bortezomib
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35847734
PubMed Central
PMC9175725
DOI
10.1002/jha2.4
PII: JHA24
Knihovny.cz E-zdroje
- Klíčová slova
- Akt inhibition, bortezomib, multiple myeloma, perifosine, proteasome inhibition,
- Publikační typ
- časopisecké články MeSH
Perifosine, an investigational, oral, synthetic alkylphospholipid, inhibits signal transduction pathways of relevance in multiple myeloma (MM) including PI3K/Akt. Perifosine demonstrated anti-MM activity in preclinical studies and encouraging early-phase clinical activity in combination with bortezomib. A randomized, double-blind, placebo-controlled phase 3 study was conducted to evaluate addition of perifosine to bortezomib-dexamethasone in MM patients with one to four prior therapies who had relapsed following previous bortezomib-based therapy. The primary endpoint was progression-free survival (PFS). The study was discontinued at planned interim analysis, with 135 patients enrolled. Median PFS was 22.7 weeks (95% confidence interval 16·0-45·4) in the perifosine arm and 39.0 weeks (18.3-50.1) in the placebo arm (hazard ratio 1.269 [0.817-1.969]; P = .287); overall response rates were 20% and 27%, respectively. Conversely, median overall survival (OS) was 141.9 weeks and 83.3 weeks (hazard ratio 0.734 [0.380-1.419]; P = .356). Overall, 61% and 55% of patients in the perifosine and placebo arms reported grade 3/4 adverse events, including thrombocytopenia (26% vs 14%), anemia (7% vs 8%), hyponatremia (6% vs 8%), and pneumonia (9% vs 3%). These findings demonstrate no PFS benefit from the addition of perifosine to bortezomib-dexamethasone in this study of relapsed/refractory MM, but comparable safety and OS.
Aeterna Zentaris Frankfurt Germany
Cancer Care Northwest Spokane Washington USA
Chaim Sheba Medical Center Tel Hashomer Israel
CIUSSS de l'est de l'île de Montréal University of Montreal Montreal Canada
Department of Hematology Oncology Medical College of Wisconsin Milwaukee Wisconsin USA
Department of Internal Medicine Seoul National University College of Medicine Seoul South Korea
Greenebaum Comprehensive Cancer Center University of Maryland Baltimore Maryland USA
Hadassah University Hospital Jerusalem Israel
Hospital Universitario 12 de Octubre CNIO Complutense University Madrid Spain
Institute of Hematology Assuta Medical Centers Tel Aviv and Ariel University Ariel Israel
Keryx Biopharmaceuticals Inc New York New York USA
Sungkyunkwan University School of Medicine Samsung Medical Center Seoul South Korea
Zobrazit více v PubMed
Bianchi G, Anderson KC. Understanding biology to tackle the disease: multiple myeloma from bench to bedside, and back. CA Cancer J Clin. 2014;64:422–44. PubMed
Goldschmidt H, Ashcroft J, Szabo Z, Garderet L. Navigating the treatment landscape in multiple myeloma: which combinations to use and when? Ann Hematol. 2019;98:1–18. PubMed PMC
Hari P. Recent advances in understanding multiple myeloma. Hematol Oncol Stem Cell Ther. 2017;10:267–71. PubMed
Kumar SK, Rajkumar V, Kyle RA, van Duin M, Mateos MV, Gay F, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:17046. PubMed
Richter J, Jagannath S. Society of hematologic oncology state of the art update and next questions: multiple myeloma. Clin Lymphoma Myeloma Leuk. 2018;18:693–702. PubMed
Kumar SK, Callander NS, Alsina M, Atanackovic D, Biermann JS, Castillo J, et al. NCCN Guidelines Insights: Multiple Myeloma, Version 3. 2018. J Natl Compr Canc Netw. 2018;16:11–20. PubMed
Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36:561–84. PubMed
Holstein SA, McCarthy PL. Immunomodulatory drugs in multiple myeloma: Mechanisms of action and clinical experience. Drugs. 2017;77:505–20. PubMed PMC
Ocio EM, Richardson PG, Rajkumar SV, Palumbo A, Mateos MV, Orlowski R, et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia. 2014;28:525–42. PubMed PMC
Szalat R, Munshi NC. Novel agents in multiple myeloma. Cancer J. 2019;25:45–53. PubMed PMC
Varga C, Laubach J, Hideshima T, Chauhan D, Anderson KC, Richardson PG. Novel targeted agents in the treatment of multiple myeloma. Hematol Oncol Clin North Am. 2014;28:903–25. PubMed
Harvey RD, Lonial S. PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol. 2007;3:639–47. PubMed
Richardson PG, Eng C, Kolesar J, Hideshima T, Anderson KC. Perifosine, an oral, anti‐cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012;8:623–33. PubMed PMC
Cirstea D, Hideshima T, Rodig S, Santo L, Pozzi S, Vallet S, et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin‐bound‐rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 2010;9:963–75. PubMed PMC
David E, Sinha R, Chen J, Sun SY, Kaufman JL, Lonial S. Perifosine synergistically enhances TRAIL‐induced myeloma cell apoptosis via up‐regulation of death receptors. Clin Cancer Res.2008;14:5090–98. PubMed
Gajate C, Mollinedo F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood. 2007;109:711–9. PubMed
Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006;107:4053–62. PubMed PMC
Huston A, Leleu X, Jia X, Moreau AS, Ngo HT, Runnels J, et al. Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res. 2008;14:865–74. PubMed
Hideshima T, Catley L, Raje N, Chauhan D, Podar K, Mitsiades C, et al. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol.2007;138:783–91. PubMed
Jakubowiak AJ, Richardson PG, Zimmerman T, Alsina M, Kaufman JL, Kandarpa M, et al. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a phase i multiple myeloma research consortium study. Br J Haematol. 2012;158:472–80. PubMed
Richardson PG, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin D, et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol. 2011;29:4243–49. PubMed
Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high‐dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol.1998;102:1115–23. PubMed
Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73. PubMed
Petrucci MT, Giraldo P, Corradini P, Teixeira A, Dimopoulos MA, Blau IW, et al. A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma. Br J Haematol. 2013;160:649–59. PubMed
Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J, et al. Multi‐center phase II study of perifosine (KRX‐0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. Blood. 2007;110:1164.
Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep. 2009;11:102–10. PubMed PMC
Richardson PG, San Miguel JF, Moreau P, Hajek R, Dimopoulos MA, Laubach JP, et al. Interpreting clinical trial data in multiple myeloma: translating findings to the real‐world setting. Blood Cancer J. 2018;8:109. PubMed PMC
Bendell JC, Ervin TJ, Senzer NN, Richards DA, Firdaus I, Lockhart AC, et al. Results of the X‐PECT study: a phase III randomized double‐blind, placebo‐controlled study of perifosine plus capecitabine (P‐CAP) versus placebo plus capecitabine (CAP) in patients (pts) with refractory metastatic colorectal cancer (mCRC). J Clin Oncol. 2017;30:LBA3501.
Keane NA, Glavey SV, Krawczyk J, O'Dwyer M. AKT as a therapeutic target in multiple myeloma. Expert Opin Ther Targets. 2014;18:897–915. PubMed
Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leuk Lymphoma. 2018;59:2524–34. PubMed
Wang L, Lin N, Li Y. The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep. 2019;41:1678–90. PubMed PMC
Brown JS, Banerji U. Maximising the potential of AKT inhibitors as anti‐cancer treatments. Pharmacol Ther. 2017;172:101–15. PubMed PMC
Fensterle J, Aicher B, Seipelt I, Teifel M, Engel J. Current view on the mechanism of action of perifosine in cancer. Anticancer Agents Med Chem. 2014;14:629–35. PubMed
Guidetti A, Carlo‐Stella C, Locatelli SL, Malorni W, Mortarini R, Viviani S, et al. Phase II study of perifosine and sorafenib dual‐targeted therapy in patients with relapsed or refractory lymphoproliferative diseases. Clin Cancer Res. 2014;20:5641–51. PubMed
O'Donnell JS, Massi D, Teng MWL, Mandala M. PI3K‐AKT‐mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol. 2018;48:91–103. PubMed
Becher OJ, Gilheeney SW, Khakoo Y, Lyden DC, Haque S, De Braganca KC, et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer.2017;64. doi: 10.1002/pbc.26409. PubMed DOI
Becher OJ, Millard NE, Modak S, Kushner BH, Haque S, Spasojevic I, et al. A phase I study of single‐agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One. 2017;12:e0178593. PubMed PMC
Kushner BH, Cheung NV, Modak S, Becher OJ, Basu EM, Roberts SS, et al. A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: long‐term progression‐free survival of patients with resistant neuroblastoma. Int J Cancer. 2017;140:480–84. PubMed PMC
Matsumoto K, Shichino H, Kawamoto H, Kosaka Y, Chin M, Kato K, et al. Phase I study of perifosine monotherapy in patients with recurrent or refractory neuroblastoma. Pediatr Blood Cancer. 2017;64. doi: 10.1002/pbc.26623. PubMed DOI
Kim MN, Ro SW, Kim DY, Kim da Y, Cho KJ, Park JH, et al. Efficacy of perifosine alone and in combination with sorafenib in an HrasG12V plus shp53 transgenic mouse model of hepatocellular carcinoma. Cancer Chemother Pharmacol. 2015;76:257–67. PubMed
Le Grand M, Berges R, Pasquier E, Montero MP, Borge L, Carrier A, et al. Akt targeting as a strategy to boost chemotherapy efficacy in non‐small cell lung cancer through metabolism suppression. Sci Rep. 2017;7:45136. PubMed PMC
Shen J, Xu L, Zhao Q. Perifosine and ABT‐737 synergistically inhibit lung cancer cells in vitro and in vivo. Biochem Biophys Res Commun, 2016;473:1170–76. PubMed
Zhang J, Hong Y, Shen J. Combination treatment with perifosine and MEK‐162 demonstrates synergism against lung cancer cells in vitro and in vivo. Tumour Biol. 2015;36:5699–706. PubMed
Nijhof IS, van de Donk N, Zweegman S. Lokhorst HM. Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update. Drugs. 2018;78:19–37. PubMed PMC